Search Results

You are looking at 1 - 3 of 3 items for

  • Author: F Nicol x
  • Refine by Access: All content x
Clear All Modify Search
Free access

JH Mitchell, F Nicol, GJ Beckett, and Arthur JR

Selenium deficiency causes further impairment of thyroid hormone metabolism in iodine-deficient rats and therefore could have a role in the aetiology of both myxoedematous and neurological cretinism in humans. Thyroidal type I iodothyronine deiodinase (ID-I), cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase activities were increased in iodine-deficient adult rats and their offspring at 11 days of age. Thyroidal ID-I activity was unchanged and thyroidal cytosolic glutathione peroxidase activity was decreased by more than 75% by combined selenium and iodine deficiency in 11-day-old rats, indicating that, while the thyroid retained an ability to produce 3,3',5-triiodothyronine (T3), the gland was probably more susceptible to peroxidative damage caused by increased hydrogen peroxide concentrations driven by increased thyrotrophin. Thyroidal atrophy, common in myxoedematous cretinism, did not occur in iodine- or selenium and iodine-deficient rat pups. Iodine deficiency increased brain type II iodothyronine deiodinase activity 1.5-fold in 4-day-old rats and 3-fold in 11-day-old rats, regardless of selenium status. Thus rats were able to activate compensatory mechanisms in brain that would maintain T3 concentrations in selenium and iodine deficiencies. Surprisingly, however, selenium deficiency had a greater effect than iodine deficiency on markers of brain development in rat pups. Expression of the brain-derived neurotrophic factor (BDNF) mRNA was decreased in selenium deficiency in 4- and 11-day-old pups and in combined selenium and iodine deficiency in 4-day-old pups. Iodine deficiency caused an increase in BDNF expression in 11-day-old pups but had no effect on 4-day-old pups. Myelin basic protein mRNA expression in brain was decreased by combined selenium and iodine deficiency in 11-day-old rats.

Restricted access

J H Mitchell, F Nicol, G J Beckett, and J R Arthur

ABSTRACT

The stimulation of thyroid hormone synthesis in iodine deficiency may increase the requirement for the selenoproteins which are involved in thyroid hormone synthesis in the thyroid gland. Selenoenzyme activity and expression were investigated in the thyroid and liver of second generation selenium-and/or iodine-deficient rats. Selenium deficiency caused substantial decreases in hepatic seleniumcontaining type I iodothyronine deiodinase (ID-I) and cytosolic glutathione peroxidase (cGSHPx) activities and mRNA abundances, but phospholipid hydroperoxide glutathione peroxidase (phGSHPx) activity was only 55% of selenium-supplemented control levels, despite the absence of change in its mRNA abundance. Selenoenzyme mRNA concentrations were maintained at control levels in thyroid glands from the selenium-deficient rat pups. Despite this, a differential effect was observed in selenoenzyme activities: ID-I activity was decreased to 61%, cGSHPx activity to 45% and phGSHPx to 29% of that in selenium-adequate controls. In iodine-deficient thyroid glands, mRNA levels were increased 2·2, 50 and 2·8 times for ID-I, cGSHPx and phGSHPx respectively. ID-I and cGSHPx enzyme activities were also increased but the activity of phGSHPx was decreased despite the high mRNA abundance. Thyroid selenoprotein mRNA levels were also increased in combined selenium and iodine deficiency but again there were differential effects on enzyme activities, with ID-I activity increased, cGSHPx unchanged and phGSHPx decreased. Thus, iodine deficiency may produce an oxidant stress on the thyroid gland, increasing the requirement for selenium to maintain selenoenzyme activity. When dietary supplies of selenium are limiting, thyroid selenoprotein mRNA levels are increased to compensate for overall lack of the micronutrient. Furthermore, there is a preferential supply of available selenium to ID-I and cGSHPx to allow maintenance of thyroid function.

Restricted access

C Massart, J Gibassier, C Lucas, F Le Gall, S Giscard-Dartevelle, J Bourdinière, M S Moukhtar, and M Nicol

ABSTRACT

We studied the hormonal secretion of a human mixed follicular and medullary carcinoma. Thyroglobulin (Tg) secretion, especially by large cells and sometimes by small ones, was visualized with immunoenzymatic staining. Calcitonin (CT) was produced by small spindle-shaped cells. Moreover, immunofluorescence double staining performed on the resected thyroid tissue showed the secretion of both Tg and CT in a small number of cells. The cells lost their hormonal secretion after 2 months of culture. Hormonal secretion was modulated by different additives in the medium. Tg secretion was induced when TSH was added to the culture medium; the maximal effect was produced with the addition of 1 mU TSH/ml and 1 μm cortisol, which potentiated the effect of TSH on Tg production. A durable Tg secretion was obtained by embedding the cells in Engelbretch—Hohn—Swarn (EHS) tumour matrix. The CT production was reinduced by the addition of 4 mm Ca2+, 1 μm glucagon and 1 μm cortisol to the culture medium. These findings show that different cells are found in a mixed follicular and medullary carcinoma, some of which can secrete both CT and Tg. They can remain differentiated for a long period after being embedded in EHS tumour matrix with Ca2+ and hormonal components.