Search Results

You are looking at 1 - 6 of 6 items for

  • Author: F Labrie x
  • All content x
Clear All Modify Search
Restricted access

G. Pelletier, C. Labrie, J. Simard, M. Duval, M. G. Martinoli, H. Zhao, and F. Labrie

ABSTRACT

Prostatic steroid-binding protein (PBP) is the most abundant protein synthesized in the rat ventral prostate. The protein is under strict androgenic control and is made of two subunits containing the polypeptides Cl, C2 and C3. Using an 35S-labelled cDNA probe, we have used quantitative in-situ hybridization to assess the regulation of polypeptide Cl mRNA levels by sex steroids in the adult male rat. Densitometric quantification of autoradiographic hybridization signals revealed that a significant decrease in Cl mRNA levels could be detected 5 h after castration. Levels of Cl mRNA decreased by 50% 2·5 days after castration, while undetectable levels were reached within 7 days. Administration of the potent androgen 5α-dihydrotestosterone to castrated rats caused a progressive increase in Cl mRNA levels which became significant 5 h after the first injection, while prolonged treatment, for 3 and 7 days, caused 50 and 100% reversals respectively of the effect of castration on Cl mRNA levels. Similar results were obtained by dot-blot hybridization using the same 32P-labelled cDNA probe, thus confirming the specificity and quantification achieved by in-situ hybridization. Administration of oestradiol-17β to orchiectomized adult rats for 14 days had no effect on steady-state Cl mRNA levels. Progesterone, on the other hand, at the dose used (2 mg twice daily) caused a marked increase in Cl mRNA levels, measured by in-situ hybridization, which was completely reversed by concomitant administration of the pure antiandrogen flutamide.

The present data clearly demonstrate that the expression of PBP Cl peptide mRNA is under strict androgenic control and is a very sensitive and specific parameter of androgenic activity. They also indicate that quantitative in-situ hybridization is a powerful, sensitive and most efficient tool to study the regulation of gene expression while, in addition, providing precise information about the site of mRNA localization as well as information about the histology of the tissue, particularly the heterogeneous nature of the acinar response to androgenic stimulation and deprivation.

Free access

F Labrie, V Luu-The, SX Lin, J Simard, C Labrie, M El-Alfy, G Pelletier, and A Belanger

In women and men, an important proportion of estrogens and androgens are synthesized locally at their site of action in peripheral target tissues. This new field of endocrinology has been called intracrinology. In postmenopausal women, 100% of active sex steroids are synthesized in peripheral target tissues from inactive steroid precursors while, in adult men, approximately 50% of androgens are made locally in intracrine target tissues. The last and key step in the formation of all estrogens and androgens is catalyzed by members of the family of 17beta-hydroxysteroid dehydrogenases (17 beta-HSDs) while different 17 beta-HSDs inactivate these steroids in the same cell where synthesis takes place. To date, seven human 17 beta-HSDs have been cloned, sequenced and characterized. The 17 beta-HSDs provide each cell with the means of precisely controlling the intracellular concentration of each sex steroid according to local needs.

Free access

M Yoshioka, A Boivin, P Ye, F Labrie, and J St-Amand

In order to characterize the action of androgen in skeletal muscle, we have investigated the effects of castration (GDX) and dihydrotestosterone (DHT) on global gene expression in mice. The serial analysis of gene expression method was performed in the muscle of male mice in six experimental groups: intact, GDX and GDX+DHT injection 1, 3, 6 or 24 h before they were killed. A total of 780 822 sequenced tags quantified the expression level of 80 142 tag species. Thirteen and seventy-nine transcripts were differentially expressed in GDX and DHT respectively (P < 0.05), including eight partially characterized and 21 potential novel transcripts. The induced transcripts within 3 h after DHT injection were involved in the following functions: transcription, protein synthesis, modification and degradation, muscle contraction and relaxation, cell signaling, polyamine biosynthesis, cell cycle progression and arrest, angiogenesis, energy metabolism and immunity. However, the inductions of transcripts related to cell cycle arrest and angiogenesis were no longer significant 24 h after DHT injection. The current study might suggest that DHT promotes protein synthesis, cell signaling, cell proliferation and ATP production, as well as muscle contraction and relaxation at the transcriptional level in skeletal muscle in vivo.

Free access

G Pelletier, V Luu-The, M El-Alfy, S Li, and F Labrie

The subcellular distribution of steroidogenic enzymes has so far been studied mostly in classical endocrine glands and in the placenta. In the peripheral intracrine organs which synthesize sex steroids there is no indication about the organelles which contain the enzymes involved in steroid biosynthesis. We have thus investigated the subcellular localization of two enzymes involved in the production of sex steroids, namely 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and type 5 17beta-hydroxysteroid dehydrogenase (17beta-HSD). Using specific antibodies to these enzymes, we conducted immunoelectron microscopic studies in two peripheral tissues, namely the human prostate and mammary gland. In the prostate, immunolabelling for both 3beta-HSD and type 5 17beta-HSD was detected in the basal cells of the tube-alveoli as well as in fibroblasts and endothelial cells lining the blood vessels. In all the labelled cell types, the gold particles were distributed throughout the cytoplasm. No obvious association with any specific organelle could be observed, although some concentration of gold particles was occasionally found over bundles of microfilaments. In mammary gland sections immunolabelled for 3beta-HSD or type 5 17beta-HSD localization, labelling was observed in the cytoplasm of the secretory epithelial cells in both the acini and terminal ducts. Immunolabelling was also found in the endothelial cells as well as in fibroblasts in stroma and blood vessels. The gold particles were not detected over any organelles, except with the occasional accumulation of gold particles over microfilaments. The present data on the localization of two steroidogenic enzymes leading to the synthesis of testosterone indicate that these enzymes are located not only in epithelial cells but also in stromal and endothelial cells in both tissues studied. The absence of any association of the enzymes with membrane-bound organelles appears as a common finding in the reactive cell types of two peripheral tissues.

Free access

G Pelletier, V Luu-The, S Li, L Ren, and F Labrie

The enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) type 1 catalyzes the conversion of estrone (E1) into 17β estradiol (E2). To gain information about the cellular localization of 17β-HSD mRNA type 1 expression, we performed in situ hybridization using a 35S-labeled cRNA probe in several tissues of adult mice of both sexes. In the ovary, high expression was found in granulosa cells of growing follicles. No specific labeling could be observed in corpora lutea or interstitial cells. In the pituitary gland of animals of both sexes, 17β-HSD type 1 mRNA was expressed in the intermediate lobe melanotrophs while no specific signal could be detected in the anterior or posterior lobes of the pituitary. In the prostate, 17β-HSD type 1 mRNA was exclusively found in the epithelial cells. In both male and female mouse dorsal skin, a specific hybridization signal was seen in the sebaceous glands while the epidermis, stroma, hair follicles and sweat glands were unlabeled. In the testis, a hybridization signal was detected in germ cells of the seminiferous tubules, Leydig cells being unlabeled. The present data indicate that E2 can be formed through the action of 17β-HSD type 1 in specific cells of the gonads and peripheral tissues. In the testes and peripheral tissues, the action of E2 is probably limited to the cells involved in its formation in an intracrine fashion.

Free access

C Bolduc, M Larose, M Yoshioka, P Ye, P Belleau, C Labrie, J Morissette, V Raymond, F Labrie, and J St-Amand

Intra-abdominal fat accumulation is related to several diseases, especially diabetes and heart disease. Molecular mechanisms associated with this independent risk factor are not well established. Through the serial analysis of gene expression (SAGE) strategy, we have studied the transcriptomic effects of castration and dihydrotestosterone (DHT) in retroperitoneal adipose tissue of C57BL6 male mice. Approximately 50 000 SAGE tags were isolated in intact and gonadectomized mice, as well as 3 and 24 h after DHT administration. Transcripts involved in energy metabolism, such as glyceraldehyde-3-phosphate dehydrogenase, malic enzyme supernatant, fatty acid synthase, lipoprotein lipase, hormone-sensitive lipase and monoglyceride lipase, were upregulated by DHT. Transcripts involved in adipogenesis, and cell cycle and cell shape organization, such as DDX5, C/EBPα, cyclin I, procollagen types I, III, IV, V and VI, SPARC and matrix metalloproteinase 2, were upregulated by DHT. Cell defense, division and signaling, protein expression and many novel transcripts were regulated by castration and DHT. The present results provide global genomic evidence for a stimulation of glycolysis, fatty acids and triacylglycerol production, lipolysis and cell shape reorganization, as well as cell proliferation and differentiation, by DHT. The novel transcripts regulated by DHT may contribute to identify new mechanisms involved in the action of sex hormones and their potential role in obesity.