ABSTRACT
We have previously characterized specific oxytocin receptors in the rat anterior pituitary gland, using a highly selective oxytocin receptor antagonist as radio-ligand. The aim of the present study was to examine whether occupation of these receptors by oxytocin produces a stimulation of prolactin release and a rise in the accumulation of total inositol phosphates in the rat adenohypophysis. Anterior pituitary cells harvested from randomly cycling and diethylstilboestrol (100 μg s.c.)-treated rats were perifused with Dulbecco's minimal essential medium at a rate of 0·3 ml/min. Oxytocin and the specific oxytocin agonist [Thr4-Gly7]-oxytocin (TG-OT) both stimulated a significant prolactin release at concentrations of 10-6 and 10-7 m. Oestrogen treatment did not affect the response to oxytocin, indicating that there is no straightforward correlation between receptor number and prolactin secretory response in the rat pituitary gland.
The involvement of phosphoinositide hydrolysis was investigated in dispersed anterior pituitary cells and uterine tissue from randomly cycling rats. Oxytocin and arginine-vasopressin stimulated a significant (P<0·05) and dose-related increase in total inositol phosphates, vasopressin being more potent. The specific oxytocin agonist TG-OT had no effect on total inositol phosphate production in pituitary cells, but when tested in uterine tissue it significantly (P< 0.05) stimulated the accumulation of total inositol phosphate at all concentrations tested (10-5 to 10-9 m). In conclusion, the data show that oxytocin has prolactin-releasing activity, acting on specific receptors in the anterior pituitary gland. Furthermore, although oxytocin receptors in the rat uterus are coupled to the inositol phospholipid cycle, it would appear that this is not a prerequisite for the stimulation of prolactin secretion when specific oxytocin receptors in the rat adenohypophysis are activated.