Search Results
You are looking at 1 - 3 of 3 items for
- Author: E Takahashi x
- Refine by access: All content x
Search for other papers by E Takahashi in
Google Scholar
PubMed
Search for other papers by N Miyamoto in
Google Scholar
PubMed
Search for other papers by T Nagasu in
Google Scholar
PubMed
The omega-agatoxin-IVA-sensitive P/Q-type Ca(2+) channel plays a role in insulin release from the pancreatic islets of beta cells. To dissect the molecular mechanisms underlying beta cell expression of the P/Q-type channel, we characterized the 5'-upstream region of the mouse alpha(1A) subunit gene using transgenic mice and HIT insulinoma cells. The E. coli lacZ reporter gene was expressed in pancreatic acini and islets in transgenic mice carrying the 6.3 kb or 3.0 kb of the 5'-upstream region, although those with 1.5 kb or 0. 5 kb of the 5'-upstream region failed to show reporter expression on histological examination. As the expression of alpha(1A)subunit gene could not be detected in acini using RT-PCR analysis, the reporter expression in acini might have been ectopic expression. When linked to the placental alkaline phosphatase reporter gene to examine promoter activity for beta cell expression, the 6.3 kb and 3.0 kb fragment of the 5'-upstream region, but not the smaller 1.5 kb fragment, were able to drive reporter gene expression in HIT cells. The sequence between 3.0 and 1.5 kb upstream of the start codon enhanced thymidine kinase promoter activity in HIT cells, but not in fibroblast NIH3T3 cells. These results suggested that the beta cell-specific elements of the alpha(1A) subunit gene are likely to be located in the distal upstream region (-3021 to-1563) of the 5'-upstream sequence and that the 6.3 kb fragment of the 5'-upstream region alone might be a lack of a negative cis-regulatory element(s) to suppress the alpha(1A) subunit gene expression in acini.
Search for other papers by H Watanabe in
Google Scholar
PubMed
Search for other papers by A Suzuki in
Google Scholar
PubMed
Search for other papers by M Kobayashi in
Google Scholar
PubMed
Search for other papers by E Takahashi in
Google Scholar
PubMed
Search for other papers by M Itamoto in
Google Scholar
PubMed
Search for other papers by DB Lubahn in
Google Scholar
PubMed
Search for other papers by H Handa in
Google Scholar
PubMed
Search for other papers by T Iguchi in
Google Scholar
PubMed
In order to understand early events caused by estrogen in vivo, temporal uterine gene expression profiles at early stages were examined using DNA microarray analysis. Ovariectomized mice were exposed to 17beta-estradiol and the temporal mRNA expression changes of ten thousand various genes were analyzed. Clustering analysis revealed that there are at least two phases of gene activation during the period up to six hours. One involved immediate-early genes, which included certain transcription factors and growth factors as well as oncogenes. The other involved early-late genes, which included genes related to RNA and protein synthesis. In clusters of down-regulated genes, transcription factors, proteases, apoptosis and cell cycle genes were found. These hormone-inducible genes were not induced in estrogen receptor (ER) alpha knockout mice. Although expression of ERbeta is known in the uterus, these findings indicate the importance of ERalpha in the changes in gene expression in the uterus.
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collége de France, 67404 Illkirch, Strasbourg, France
Search for other papers by H Watanabe in
Google Scholar
PubMed
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collége de France, 67404 Illkirch, Strasbourg, France
Search for other papers by E Takahashi in
Google Scholar
PubMed
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collége de France, 67404 Illkirch, Strasbourg, France
Search for other papers by M Kobayashi in
Google Scholar
PubMed
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collége de France, 67404 Illkirch, Strasbourg, France
Search for other papers by M Goto in
Google Scholar
PubMed
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collége de France, 67404 Illkirch, Strasbourg, France
Search for other papers by A Krust in
Google Scholar
PubMed
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collége de France, 67404 Illkirch, Strasbourg, France
Search for other papers by P Chambon in
Google Scholar
PubMed
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, Collége de France, 67404 Illkirch, Strasbourg, France
Search for other papers by T Iguchi in
Google Scholar
PubMed
Recent studies have revealed that hundreds of genes in the uterus are activated by estrogen. Their expression profiles differ over time and doses and it is not clear whether all these genes are directly regulated by estrogen via the estrogen receptor. To select the genes that may be regulated by estrogen, we treated mice with several doses of estrogen and searched for those genes whose dose–response expression pattern mirrored the uterine growth pattern. Among those genes, we found that the dose-dependent expression of the adrenomedullin (ADM) gene correlated well with the uterotrophic effect of estrogen. ADM expression is induced early after estrogen administration and is restricted to the endometrial stroma. The spatiotemporal gene expression pattern of ADM was similar to that of receptor-modifying protein 3 (RAMP3). RAMP3 is known to modify calcitonin gene-related receptor (CRLR) so that it can then serve as an ADM receptor. Chromatin immunoprecipitation assays indicated that the estrogen receptor binds directly to the ADM promoter region and RAMP3 intron after estrogen administration. It was also shown that neither the ADM nor RAMP3 gene could be activated in estrogen receptor-α-null mouse. Although uterine ADM expression has been reported to occur in the myometrium, our observations indicate that estrogen-induced ADM is also expressed in the uterine stroma and that such variable, spatiotemporally regulated ADM expression contributes to a wider range of biological effects than previously expected.