Search Results

You are looking at 1 - 2 of 2 items for

  • Author: E Landolfi x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

G. Schettini, E. Landolfi, O. Meucci, T. Florio, M. Grimaldi, C. Ventra, and A. Marino


The effect of adenosine and its analogue ( − )-N6-R-phenylisopropyladenosine (PIA) on both anterior pituitary adenylate cyclase activity and prolactin secretion was examined in the rat. Adenosine inhibited basal adenylate cyclase activity in a dose-dependent manner and also reduced the stimulation of the enzyme by vasoactive intestinal peptide (VIP). Likewise, in primary cultures of anterior pituitary cells, adenosine decreased prolactin secretion in both basal and VIP-stimulated conditions. In perifusion experiments, adenosine also inhibited prolactin release in both basal and TRH-stimulated conditions. PIA produced a biphasic pattern of response of basal adenylate cyclase activity, being inhibitory at low and stimulatory at high concentrations. In VIP-stimulated conditions, low concentrations of PIA inhibited both adenylate cyclase activity and prolactin release from primary cultures of pituitary cells, while no additive stimulatory effect was seen at high concentrations. Similarly, low concentrations of PIA reduced both basal and TRH-stimulated prolactin release from perifused pituitaries, while increasing PIA concentrations restored prolactin release. These data show that adenosine affects basal and stimulated prolactin secretion from anterior pituitary cells. Adenosine receptors seem to be coupled to the adenylate cyclase system in the anterior pituitary gland, suggesting a possible relationship between the effect of adenosine on adenylate cyclase activity and prolactin secretion.

Restricted access

A Scorziello, E Landolfi, M Grimaldi, O Meucci, C Ventra, A Avallone, A Postiglione, and G Schettini


We studied the effect of adenosine on prolactin secretion by the anterior pituitary, and the transduction mechanisms whereby the purine exerts its action. Adenosine inhibited prolactin release in basal and in vasoactive intestinal peptide (VIP)- or TRH-stimulated conditions. Pertussis toxin pretreatment reduced the inhibition of VIP-stimulated prolactin secretion which was induced by adenosine, while it completely abolished the effect of the purine on TRH-evoked prolactin release. In membrane preparations of anterior pituitary cells, adenosine reduced the adenylate cyclase activity stimulated by VIP. Such an inhibition was not blocked by pertussis toxin pretreatment.

Furthermore, the purine reduced TRH-stimulated inositol phosphate production in cultured anterior pituitary cells, an effect that was reversed by pretreatment with pertussis toxin. In addition, the nucleoside did not significantly affect the TRH-induced rise in intracellular calcium.

In conclusion, our data show that adenosine inhibits prolactin secretion, acting on purinergic receptors coupled to the adenylate cyclase enzyme and phospholipase C. The effect of the nucleoside on adenylate cyclase seems to be achieved either by the involvement of an adenosine receptor coupled to the catalytic subunit of the enzyme via a pertussis toxin-sensitive G protein, or by the activation of a site directly coupled to the catalytic subunit of the adenylate cyclase (the P site). Its effect on phospholipase C seems to be mediated by a purinergic receptor coupled to the intracellular effector via a pertussis toxin-sensitive G protein.