Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Dan Wang x
Clear All Modify Search
Free access

Qin He, Dan Mei, Sha Sha, Shanshan Fan, Lin Wang and Ming Dong

Free access

Qin He, Dan Mei, Sha Sha, Shanshan Fan, Lin Wang and Ming Dong

Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem and is considered as a hepatic manifestation of metabolic syndrome. Increasing evidence demonstrates that berberine (BBR), a natural plant alkaloid, is beneficial for obesity-associated NAFLD. However, the mechanisms about how BBR improves hepatic steatosis remain uncertain. Recently, some reports revealed that enhanced autophagy could decrease hepatic lipid accumulation. In this study, we first established a high-fed diet (HFD) mice model and oleate–palmitate-induced lipotoxicity hepatocytes to explore the association among BBR, autophagy and hepatic steatosis. Our data demonstrated that BBR had profound effects on improving hepatic lipid accumulation both in vivo and in vitro, and led to high autophagy flux. The molecular alterations proceeding these changes were characterized by inhibition of the ERK/mTOR pathway. These findings suggest an important mechanism for the positive effects of BBR on hepatic steatosis, and may provide new evidence for the clinical use of BBR in NAFLD.

Restricted access

Xueting Wang, Zhiran Zou, Zhihui Yang, Shan Jiang, Yapeng Lu, Dan Wang, Zhangji Dong, Sha Xu and Li Zhu

Hypoxia-inducible factor-1 (HIF1) is a critical transcription factor involved in cell response to hypoxia. Under physiological conditions, its ‘a’ subunit is rapidly degraded in most tissues except testes. HIF1 is stably expressed in Leydig cells, which are the main source of testosterone for male, and might bind to the promoter region of steroidogenic acute regulatory protein (STAR), which is necessary for the testosterone synthesis, according to software analysis. This study aims to identify the binding sites of HIF1 on Star promoter and its transcriptional regulation of STAR to affect testosterone synthesis. Testosterone level and steroid synthesis-related proteins were determined in male Balb/C mice exposed to hypoxia (8% O2). While HIF1 was upregulated, the testosterone level was significantly decreased. This was further confirmed by in vitro experiments with rat primary Leydig cells or TM3 cells exposed to hypoxia (1% O2), CoCl2 or DFX to raise HIF1. The decline of testosterone was reversed by pregnenolone but not cAMP, indicating the cholesterol transport disorder as the main cause. In agreement, STAR expression level was decreased in response to HIF1, while 3b-hydroxysteroid dehydrogenase, 17b-hydroxysteroid dehydrogenase and p450scc did not exhibit significant changes. By ChIP, EMSA supershift and dual-luciferase reporter assays, HIF1 was found to bind to the Star promoter region and repress the expression of STAR. Mutation assays identified three HIF1-binding sites on mouse Star promoter. These findings indicate that HIF1 represses STAR transcription through directly binding to the Staar promoter at −2082/−2078, −2064/−2060 and −1910/−1906, leading to the negative regulation of testosterone synthesis.

Free access

Leping Zhao, Yong Pan, Kesong Peng, Zhe Wang, Jieli Li, Dan Li, Chao Tong, Yi Wang and Guang Liang

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) controls the production of active glucocorticoid (GC) and has been proposed as a new target for the treatment of type 2 diabetes. We have previously reported that a natural product, curcumin, exhibited moderate inhibition and selectivity on 11β-HSD1. By analyzing the models of protein, microsome, cells and GCs-induced mice in vitro and in vivo, this study presented a novel curcumin analog, LG13, as a potent selective 11β-HSD1 inhibitor. In vivo, Type 2 diabetic mice were treated with LG13 for 42 days to assess the pharmacological benefits of 11β-HSD1 inhibitor on hepatic glucose metabolism. In vitro studies revealed that LG13 selectively inhibited 11β-HSD1 with IC50 values at nanomolar level and high selectivity over 11β-HSD2. Targeting 11β-HSD1, LG13 could inhibit prednisone-induced adverse changes in mice, but had no effects on dexamethasone-induced ones. Further, the 11β-HSD1 inhibitors also suppressed 11β-HSD1 and GR expression, indicating a possible positive feedback system in the 11β-HSD1/GR cycle. In type 2 diabetic mice induced by high fat diet plus low-dosage STZ injection, oral administration with LG13 for 6 weeks significantly decreased fasting blood glucose, hepatic glucose metabolism, structural disorders, and lipid deposits. LG13 exhibited better pharmacological effects in vivo than insulin sensitizer pioglitazone and potential 11β-HSD1 inhibitor PF-915275. These pharmacological and mechanistic insights on LG13 also provide us novel agents, leading structures, and strategy for the development of 11β-HSD1 inhibitors treating metabolic syndromes.

Free access

Yue Wang, Xiu Long Niu, Xiao Qin Guo, Jing Yang, Ling Li, Ye Qu, Cun Xiu Hu, Li Qun Mao and Dan Wang

About 40–60% of ovarian cancer (OVCA) cases express ERα, but only a small proportion of patients respond clinically to anti-estrogen treatment with estrogen receptor (ER) antagonist tamoxifen (TAM). The mechanism of TAM resistance in the course of OVCA progression remains unclear. However, IL6 plays a critical role in the development and progression of OVCA. Our recent results indicated that IL6 secreted by OVCA cells may promote the resistance of these cells to TAM via ER isoforms and steroid hormone receptor coactivator-1. Here we demonstrate that both exogenous (a relatively short period of treatment with recombinant IL6) and endogenous IL6 (generated as a result of transfection with a plasmid encoding sense IL6) increases expression of pERα-Ser118 and pERα-Ser167 in non-IL6-expressing A2780 cells, while deleting endogenous IL6 expression in IL6-overexpressing CAOV-3 cells (by transfection with a plasmid encoding antisense IL6) reduces expression of pERα-Ser118 and pERα-Ser167, indicating that IL6-induced TAM resistance may also be associated with increased expression of pERα-Ser118 and pERα-Ser167 in OVCA cells. Results of further investigation indicate that IL6 phosphorylates ERα at Ser118 and Ser167 by triggering activation of MEK/ERK and phosphotidylinositol 3 kinase/Akt signaling, respectively, to activate the ER pathway and thereby induce OVCA cells resistance to TAM. These results indicate that IL6 secreted by OVCA cells may also contribute to the refractoriness of these cells to TAM via the crosstalk between ER and IL6-mediated intracellular signal transduction cascades. Overexpression of IL6 not only plays an important role in OVCA progression but also promotes TAM resistance. Our results indicate that TAM-IL6-targeted adjunctive therapy may lead to a more effective intervention than TAM alone.

Free access

Ting-Ting Zhou, Fei Ma, Xiao-Fan Shi, Xin Xu, Te Du, Xiao-Dan Guo, Gai-Hong Wang, Liang Yu, Vatcharin Rukachaisirikul, Li-Hong Hu, Jing Chen and Xu Shen

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated pathogenesis and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. G protein-coupled receptors (GPCRs) are classified as distinct families by heterotrimeric G proteins, primarily including Gαs, Gαi and Gαq. Gαs-coupled GPCRs function potently in the regulation of hepatic gluconeogenesis by activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and Gαi-coupled GPCRs exhibit inhibitory effect on adenylyl cyclase and reduce intracellular cAMP level. However, little is known about the regulation of Gαq-coupled GPCRs in hepatic gluconeogenesis. Here, small-molecule 2-(2,4-dimethoxy-3-methylphenyl)-7-(thiophen-2-yl)-9-(trifluoromethyl)-2,3-dihydropyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(1H)-one (DMT) was determined to suppress hepatic glucose production and reduce mRNA levels of gluconeogenic genes. Treatment of DMT in db/db mice decreased fasting blood glucose and hemoglobin A1C (HbA1c) levels, while improved glucose tolerance and pyruvate tolerance. Mechanism study demonstrated that DMT-inhibited gluconeogenesis by regulating the Gαq/phospholipase C (PLC)/inositol-1,4,5-triphosphate receptor (IP3R)-mediated calcium (Ca2+)/calmodulin (CaM)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O1 (FOXO1) signaling pathway. To our knowledge, DMT might be the first reported small molecule able to suppress hepatic gluconeogenesis by regulating Gαq signaling, and our current work has also highlighted the potential of DMT in the treatment of T2DM.