Search Results

You are looking at 1 - 3 of 3 items for

  • Author: D LeRoith x
  • Refine by Access: All content x
Clear All Modify Search
Free access

K Paz, S Boura-Halfon, LS Wyatt, D LeRoith, and Y Zick

Insulin-stimulated signaling pathways are activated upon interactions between the intracellular domains of the receptor and its downstream effectors. Insulin receptor substrate proteins (IRS-1, -2, -3 and -4) are the best-studied substrates for the insulin receptor kinase (IRK). We have previously shown that IRS-1 and IRS-2 interact with the juxtamembrane (JM) but not with the carboxyl-terminal (CT) region of the insulin receptor (IR) in vitro. However, the precise role of these IR regions in mediating insulin's bioeffects is still unresolved. In the present work we made use of vaccinia virus as a vector for quantitative expression of the JM and CT domains within the cytoplasm of physiologically insulin-responsive primary rat adipocytes and rat hepatoma Fao cells. We could demonstrate that overexpression of either the JM or the CT domains did not inhibit either insulin binding or insulin-stimulated receptor autophosphorylation. In contrast, metabolic effects such as insulin-induced glucose utilization in adipocytes, and insulin-induced amino acid utilization in Fao hepatoma cells were inhibited (70-80%) in cells overexpressing the JM but not the CT domains of IR. The inhibitory effects of the overexpressed JM domain were accompanied by inhibition of insulin-stimulated IRS-1 phosphorylation, decreased IRS-1-associated PI3K activity, and decreased phosphorylation of the downstream effectors of PI3K, PKB and p70 S6K. Insulin-stimulated thymidine incorporation in Fao cells was also inhibited (40%) upon overexpression of the JM but not the CT region of IR. Our findings suggest that interactions between the JM region of IR and its downstream effectors are obligatory for insulin-stimulated metabolic functions in physiologically relevant insulin responsive cells. They also rule out the possibility that interaction of proteins, including PI3K, with the CT domain can provide an alternative pathway.

Restricted access

R Eshet, H Werner, B Klinger, A Silbergeld, Z Laron, D LeRoith, and C T Roberts Jr


We have analysed the expression of the IGF-I receptor gene in lymphocytes of patients with low levels of circulating IGF-I (four patients with isolated GH deficiency (IGHD) and one Laron-type dwarf (LTD)) in comparison with a control group exhibiting normal serum IGF-I levels and endocrine profiles. 125I-Labelled IGF-I binding assays were performed on erythrocytes to determine the number of IGF-I binding sites per cell and their dissociation constants. Erythrocytes from patients with IGHD or LTD contained significantly (P=0·002) more receptors per cell (10·9±3·1 binding sites/cell), with a reduced affinity (K d = 0·49±0·05 nm), than erythrocytes from controls (2·0±0·4 sites/cell; K d = 0·14 nm). The levels of IGF-I receptor mRNA in circulating lymphocytes were determined by an RNA template-specific reverse transcription/polymerase chain reaction method. There was a statistically significant increase in IGF-I receptor mRNA levels in lymphocytes from patients with LTD or IGHD when compared with controls (3108·1±775·9 vs 576·0±465·7 arbitrary units, P=0·006). The increased level of IGF-I binding due to increased IGF-I receptor gene expression may represent a compensatory up-regulation process activated in response to the low levels of IGF-I in the circulation of patients with LTD or IGHD.

Restricted access

M Phillip, H Werner, T Palese, A A Kowarski, B Stannard, L A Bach, D LeRoith, and C T Roberts Jr


Nephropathy, one of the major complications of diabetes mellitus, is characterized by an early increase in kidney size. In experimental models of diabetes, this event is preceded by a rapid and transient rise in kidney IGF-I levels, at least in adult animals. Since diabetes-associated renal changes are uncommon in young patients, we investigated the early changes in the components of the IGF system following induction of diabetes in prepubertal and postpubertal rats. The rationale for this study was the evaluation of potential differences which could lead to kidney complications only at adult stages.

Unlike the situation in the postpubertal kidney, in which there was a transient accumulation of extractable IGF-I 24–48 h after streptozotocin (STZ) administration, there was a decrease of ∼12-fold in the level of IGF-I in the prepubertal kidney over the same period of time. Paradoxically, kidney IGF-I mRNA levels were reduced by ∼50% in the postpubertal rat 24 h after STZ treatment, whereas in the prepubertal kidney IGF-I mRNA levels were unaltered. Furthermore, the levels of IGF-I receptor mRNA and 125I-labelled IGF-I binding to kidney membranes of postpubertal diabetic rats were similar to the levels in control kidneys. On the other hand, both the levels of IGF-I receptor mRNA and 125I-labelled IGF-I binding were increased (∼2·5-fold (after 24 h) and ∼ 3-fold (after 48 h) respectively) in prepubertal animals. In addition, increased expression of IGF-binding protein (IGFBP)-1 mRNA was seen early in diabetes in both pre- and postpubertal rats.

The results of this study suggest that the transient accumulation of IGF-I in the kidney of the postpubertal diabetic rat may not be due to an increase in the local synthesis of IGF-I, but rather to an increase in IGF-I uptake from the circulation due to non-membrane-associated IGFBP-1. The lack of accumulation of IGF-I in the prepubertal kidney probably reflects the ∼ 10-fold lower levels of circulating IGF-I in young as compared with adult diabetic rats.