Search Results
You are looking at 1 - 2 of 2 items for
- Author: CJ Rhodes x
- Refine by access: All content x
Search for other papers by CJ Rhodes in
Google Scholar
PubMed
Certain nutrients, pharmacological agents and growth factors can stimulate pancreatic beta-cell proliferation; however, mitogenic signal transduction pathways in beta-cells have not been particularly well characterized. As a model system we have focussed on characterizing the signal transduction pathways immediately downstream of the IGF-I and GH receptors in beta-cells. The original idea was to gain an idea of important elements in mitogenic signaling pathways which might then be exploited to generate a marked increase in beta-cell proliferation. Such an approach could eventually reveal a means to increase the number of human pancreatic endocrine cells in vitro, in order to obtain an abundant source of beta-cells for routine transplantation therapy of type-I diabetes. However, in the course of our studies, we have also unveiled an unexpected insight into the pathogenesis of obesity-linked type-II diabetes. It has been observed that free fatty acids inhibit glucose- and glucose-dependent IGF-I/GH-induced beta-cell proliferation. We hypothesize that a gradual accumulation of intracellular fat in beta-cells during obesity can eventually lead to an inhibition of beta-cell mass expansion and hence failure to compensate for peripheral insulin resistance, so that type-II diabetes ensues.
Search for other papers by CE Wrede in
Google Scholar
PubMed
Search for other papers by LM Dickson in
Google Scholar
PubMed
Search for other papers by MK Lingohr in
Google Scholar
PubMed
Search for other papers by I Briaud in
Google Scholar
PubMed
Search for other papers by CJ Rhodes in
Google Scholar
PubMed
It is possible that activation of protein kinase C (PKC) isoforms by free fatty acids (FFA) plays a role in the failure of pancreatic beta-cell mass expansion to compensate for peripheral insulin resistance in the pathogenesis of type-2 diabetes. The effect of lipid moieties on activation of conventional (PKC-alpha and -beta1), novel (PKC-delta) and atypical (PKC-zeta) PKC isoforms was evaluated in an in vitro assay, using biotinylated neurogranin as a substrate. Oleoyl-Coenzyme A (CoA) and palmitoyl-CoA, but not unesterified FFA, significantly increased the activity of all PKC isoforms (P< or =0.05), particularly that for PKC-delta. It was found that FFA (0.4 mM oleate/complexed to 0.5% bovine serum albumin) inhibited IGF-I-induced activation of protein kinase B (PKB) in the pancreatic beta-cell line (INS-1), but this was alleviated in the presence of the general PKC inhibitor (Go6850; 1 microM). To further investigate whether conventional or novel PKC isoforms adversely affect beta-cell proliferation, the effect of phorbol ester (phorbol 12-myristate 13-acetate; PMA)-mediated activation of these PKC isoforms on glucose/IGF-I-induced INS-1 cell mitogenesis, and insulin receptor substrate (IRS)-mediated signal transduction was investigated. PMA-mediated activation of PKC (100 nM; 4 h) reduced glucose/IGF-I mediated beta-cell mitogenesis (>50%; P< or =0.05), which was reversible by the general PKC inhibitor Go6850 (1 microM), indicating an effect of PKC and not due to a non-specific PMA toxicity. PMA inhibited IGF-I-induced activation of PKB, correlating with inhibition of IGF-I-induced association of IRS-2 with the p85 regulatory subunit of phosphatidylinositol-3 kinase. However, in contrast, PMA activated the mitogen-activated protein kinases, Erk1/2. Titration inhibition analysis using PKC isoform inhibitors indicated that these PMA-induced effects were via novel PKC isoforms. Thus, FFA/PMA-induced activation of novel PKC isoforms can inhibit glucose/IGF-I-mediated beta-cell mitogenesis, in part by decreasing PKB activation, despite an upregulation of Erk1/2. Thus, activation of novel PKC isoforms by long-chain acyl-CoA may well contribute to decreasing beta-cell mass in the pathogenesis of type-2 diabetes, similar to their inhibition of insulin signal transduction which causes insulin resistance.