Twenty-one members of the secretin family (family 2) of G-protein-coupled receptors (GPCRs) were identified via directed cloning and data-mining of the Fugu Genome Consortium database, representing the most comprehensive description of secretin GPCRs in a teleost fish to date. Duplicated genes were identified for many of the family members, namely the receptors for pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP), calcitonin, calcitonin gene-related peptide (CGRP), growth hormone releasing hormone (GHRH), glucagon receptor/glucagon-like peptide (GLP) and parathyroid hormone-related peptide (PTHrP)/PTH. Mining of other teleost genomes (zebrafish and Tetraodon) revealed that the duplicated genes identified in the Takifugu genome were also present in these fish. Additional database searching of the Escherichia coli, yeast, Drosophila, Caenorhabditis elegans and Ciona genomes revealed that the family 2 of GPCRs were only present in the multicellular organisms. Orthologues of all the human secretin receptors were identified with the exception of secretin itself. Additional database searches in the Fugu Genome Consortium database also failed to reveal a secretin ligand and so it is hypothesised that both the receptor and the ligand evolved after the divergence of teleost/tetrapod lineages. Phylogenetic analysis at both the protein and the DNA level provided strong support for each of the individual receptor family groupings, but weak support between groups, making evolutionary inferences difficult. A more critical analysis of the PACAP/VIP receptor family confirmed previous hypotheses that the vasoactive intestinal peptide receptor (VPAC1R) gene is the ancestral form of the receptor.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: C A Power x
- Refine by Access: All content x
J C R Cardoso, M S Clark, F A Viera, P D Bridge, A Gilles, and D M Power
F Stewart, C A Power, S N Lennard, W R Allen, L Amet, and R M Edwards
ABSTRACT
The PCR technique and highly degenerate oligonucleotide primers were used to amplify a 282 bp fragment of the horse (Equus caballus) epidermal growth factor (EGF) cDNA. The clone corresponded to 94 amino acids of the EGF precursor molecule. The deduced amino acid sequence of the 53 residue EGF mitogenic peptide within the precursor sequence showed 60–70% identity with five other published EGF sequences. The PCR cDNA fragment hybridized to a 4·9 kb transcript in horse kidney and endometrial RNA which was of a similar size to the mature EGF transcript found in other mammalian species.
The horse cDNA clone was used in Northern blots to monitor EGF expression in the endometrium of pregnant mares up to day 83 of gestation (term=330–340 days). The level of expression increased from day 33 and showed a further dramatic increase between days 35 and 45, which coincides with the onset of implantation and placentation in this species. Levels remained elevated up to day 83. The horse DNA sequence was used to design sense and antisense oligonucleotide probes (45-mers) for in situ hybridization studies. The antisense probe showed specific hybridization to the glandular, but not lumenal, epithelial cells of the endometrium and there was no signal in fetal membranes. The in situ hybridization signal increased between days 35 and 45 to a similar degree to that observed in the Northern blot analysis. This dramatic increase in EGF expression in the glandular epithelium of the mare's endometrium during pregnancy may provide a mitogenic stimulus to the endometrium and/or trophoblast to facilitate placental differentiation and attachment. Alternatively, the precursor could be involved in the endometrial gland secretory process which is necessary to produce uterine milk for fetal sustenance.
The PCR cloning methods used in this study should be generally applicable to the cloning of EGF cDNAs from other species.