Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Bo Zhang x
  • All content x
Clear All Modify Search
Open access

Bo Li, Zhiguo Zhang, Huizhi Zhang, Kai Quan, Yan Lu, Dongsheng Cai, and Guang Ning

The prevalence of non-alcoholic fatty liver disease (NAFLD), a condition characterized by an excessive accumulation of triglycerides (TGs) in hepatocytes, has dramatically increased globally during recent decades. MicroRNAs (miRs) have been suggested to play crucial roles in many complex diseases and lipid metabolism. Our results indicated that miR199a-5p was remarkably upregulated in free fatty acid (FA)-treated hepatocytes. To investigate the role of miR199a-5p in the pathogenesis of fatty liver and the potential mechanism by which miR199a-5p regulates NAFLD, we first transfected two hepatocyte cell lines, HepG2 and AML12 cells, with agomiR199a-5p or antagomiR199a-5p. Our results indicated that miR199a-5p overexpression exacerbated deposition of FA and inhibited ATP levels and mitochondrial DNA (mtDNA) contents. Consistently, suppression of miR199a-5p partially alleviated deposition of FA and increased ATP levels and mtDNA contents. Moreover, miR199a-5p suppressed the expression of mitochondrial FA β-oxidation-related genes through inhibition of caveolin1 (CAV1) and the related peroxisome proliferator-activated receptor alpha (PPAR α) pathway. Furthermore, suppression of CAV1 gene expression by CAV1 siRNA inhibited the PPARα signalling pathway. Finally, we examined the expression of miR199a-5p in liver samples derived from mice fed a high-fat diet, db/db mice, ob/ob mice and NAFLD patients, and found that miR199a-5p was upregulated while CAV1 and PPARA were downregulated in these systems, which was strongly indicative of the essential role of miR199a-5p in NAFLD. In summary, miR199a-5p plays a vital role in lipid metabolism, mitochondrial activity and mitochondrial β-oxidation in liver. Upregulated miR199a-5p in hepatocytes may contribute to impaired FA β-oxidation in mitochondria and aberrant lipid deposits, probably via CAV1 and the PPARα pathway.

Free access

Hiroshi Ishikawa, Makio Shozu, Masahiko Okada, Mai Inukai, Bo Zhang, Keiichi Kato, Tadayuki Kasai, and Masaki Inoue


Microarray studies have identified many genes that are down-regulated in uterine leiomyoma compared with myometrium, including early growth response gene-1 (EGR1). However, the mechanisms underlying coordinated down-regulation of this gene cohort remain unknown. To address the transcriptional role of EGR1 in leiomyoma, EGR1 binding to promoter sequences on target genes was assessed by chromatin immunoprecipitation (ChIP) assay in leiomyoma tissues and myometrium-derived KW cells. Computer analysis demonstrated that 50 out of 135 genes listed as down-regulated in array reports possessed potential binding sites for EGR1 within 1 kb promoter sequence. ChIP assay was performed for a random selection of 13 genes possessing potential binding sites for EGR1 (Group A), 3 genes known as EGR1 targets in other tissues (Group B), and 4 control genes. Decreased EGR1 bindings were significant for 11 out of 16 genes (Group A+B) in leiomyoma tissues compared with myometrium, and mRNA levels in tissue samples were actually decreased for 7 out of the 11 genes. ChIP analyses performed on KW cells showed induction of EGR1 binding to the promoter region of all genes except one Group A+B gene, but for none of the control genes. These results indicate that EGR1 is a key player in coordinated down-regulation of genes in leiomyoma. Application of ChIP–quantitative PCR assay with the aid of computer-assisted analysis of genome databases appears useful for the comprehensive interpretation of array data.

Restricted access

Jing Lu, Cheng Cheng, Zhen-chao Cheng, Qian Wu, Han Shen, Ming-xia Yuan, Bo Zhang, and Jin-Kui Yang

RFX6 transcription factor is believed to play a central role in directing cell development of insulin-producing pancreatic islet. RFX6 homozygous mutations cause syndromic neonatal diabetes with hypoplastic pancreas. However, RFX6 heterozygous mutations cause maturity-onset diabetes of the young (MODY) with normal pancreas development. Here, we show that RFX6 may control islet cell development and insulin production in different manners. The rfx6 knockout zebrafish generated by CRISPR/Cas9 exhibited an overt diabetes phenotype. Pancreatic islet failed to form compact structures in the knockout fish. While endocrine pancreatic islet non-β-cells were absent, insulin-producing β-cells were present in the knockout fish. Although insulin mRNA level was normal in the β-cells of the knockout fish, insulin protein level was decreased. High-throughput RNA sequencing (RNAseq) showed that differentially expressed genes were enriched in the translation term in islet β-cells from the knockout fish. Chromatin immunoprecipitation sequencing (ChIPseq) of normally developed islet β-cells from mice demonstrated that rfx6 interacted with translation initiation factors and controlled insulin translation. Our data indicate that Rfx6 may act as a transcription factor regulating the transcription of genes involved in mRNA translation, which may represent a new mechanism and treatment strategy for diseases.

Free access

Hui Juan Zhu, Hui Pan, Xu Zhe Zhang, Nai Shi Li, Lin Jie Wang, Hong Bo Yang, and Feng Ying Gong

Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D 1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all P<0.01) in myostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Ppar γ, Cebp α, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22–76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all P<0.001). Above all, myostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Ppar γ and Cebp α expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes.

Free access

Yousheng Xu, Yongshun Wang, Jingjin Liu, Wei Cao, Lili Li, Hongwei Du, Enbo Zhan, Ruoxi Zhang, Huimin Liu, Maoen Xu, Tao Chen, Yilin Qu, and Bo Yu

The prevalence of obesity is dramatic increased and strongly associated with cardiovascular disease. Adipokines, secreted from adipose tissues, are critical risk factors for the development of cardiomyopathy. Present study aimed to investigate the pathophysiological role of autotaxin in obesity-related cardiomyopathy. In high-fat diet-fed mice, autotaxin was mainly synthesized and secreted from adipocytes. The increased accumulation of cardiac autotaxin was positively associated with cardiac dysfunction in obese mice. Interestingly, specific blockage of adipose tissue autotaxin effectively protected against high-fat diet-induced cardiac structural disorders, left ventricular hypertrophy and dysfunction. Inhibition of autotaxin further improved high-fat diet-induced cardiac fibrosis and mitochondrial dysfunction, including improvement of mitochondrial structure, mass and activities. Our findings demonstrated intervention of adipose tissue biology could influence cardiac modification in obese mice, and adipocyte-derived autotaxin was a potential diagnostic marker and therapeutic target for obesity-related cardiomyopathy.