Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Beum-Soo An x
Clear All Modify Search
Free access

Seung Chul Kim, Mee-Na Park, Young Joo Lee, Jong Kil Joo and Beum-Soo An

Female sex steroid hormones such as estrogen and progesterone have a pivotal role in maintaining pregnancy in human and animals. Especially, estrogen exerts specific effects on the cardiovascular system and angiogenesis, and thus affects significantly on placentation. Although the functions of estrogen have been emphasized during pregnancy, their signaling pathways in the placenta have not been fully understood. In this study, estrogen signaling was evaluated according to gestational age. Human placenta samples were collected and divided into early preterm (n=10), late preterm (n=18), and term (n=20) groups. First, serum estrogen concentration and corticotropin-releasing hormone (CRH) mRNA expression, which is known as gestation clock gene, were increased following gestation age in our experimental condition, as we expected. Next, the expression of estrogen receptors (ERs) and steroid receptor coactivators (SRCs) in the placenta was evaluated. ERα (ESR1) and ERβ (ESR2) were expressed highly at term period compared with early preterm. In addition, SRC family including SRC1, SRC2, and SRC3 was expressed in the human placenta, and the levels of SRC1, SRC2, and SRC3 were increased in the placenta at the late stage of gestation. The interaction of ERs with SRCs was also examined, which was significantly enhanced at term period. In the immunostaining results, it was indicated that ERs and SRCs were all dominantly expressed in syncytiotrophoblast cells. These results suggested that SRC1, SRC2, and SRC3 were expressed and interact with ERs highly at the late stage of gestation, and may amplify the signaling of estrogen in the placenta to maintain pregnancy.

Free access

Seung-Chul Kim, Jae-Eon Lee, Seong Soo Kang, Hoe-Saeng Yang, Sun Suk Kim and Beum-Soo An

Oxytocin (OXT) is a peptide hormone that plays a central role in the regulation of parturition and lactation. OXT signaling is mediated by OXT receptor (OXTR), which shows species- and tissue-specific expressions and gene regulation. In the present study, we examined the synthesis of OXT and OXTR in human placenta tissue according to gestational age. A total of 48 placentas were divided into early preterm, late preterm and term groups depending on gestational age, and expression of OXT and OXTR was evaluated. First, OXT and OXTR mRNA and protein were detected in normal placenta tissue via Q-PCR, Dot-blot and Western blot assay. Both OXT and OXTR levels in normal placenta increased gradually in the late stage of pregnancy, suggesting that local OXT may play a critical role in the function of the placenta. To determine the regulatory mechanism of OXT, placental BeWo cells were administrated estrogen (E2) or progesterone (P4), and expression of OXT and OXTR was tested. The mRNA and protein levels of OXT and OXTR were upregulated by E2 but blocked by co-treatment with P4. In order to confirm the estrogen receptor (ESR)-mediated signaling, we administrated ESR antagonists together with E2 to BeWo cells. As a result, both OXT and OXTR were significantly altered by ESR1 antagonist (MPP) while moderately regulated by ESR2 antagonist (PHTPP). These results suggest that OXT and OXTR are controlled mainly by E2 in the placenta via ESR1 and thus may play physiological functions in the human placenta during the late stage of pregnancy.

Free access

Sang R Lee, Mi-Young Park, Hyun Yang, Geun-Shik Lee, Beum-Soo An, Bae-kuen Park, Eui-Bae Jeung and Eui-Ju Hong

Androgens act in concert with vitamin D to influence reabsorption of calcium. However, it is unclear whether androgens directly regulate vitamin D homeostasis or control other cellular events that are related to vitamin D metabolism. To examine whether the expression of vitamin D-related genes in mouse kidney is driven by androgens or androgen-dependent effects, the androgen receptor and other sex steroid receptors were monitored in orchidectomized mice treated with 5α-dihydrotestosterone (DHT). Our results revealed that exposing orchidectomized mice to DHT inhibited the expression of progesterone receptor (Pgr) with or without estrogen receptor α expression, the latter was confirmed by ER-positive (MCF7 and T47D) or -negative (PCT) cells analysis. The loss of Pgr in turn decreased the expression of renal 24-hydroxylase via transcriptional regulation because Cyp24a1 gene has a progesterone receptor-binding site on promoter. When male kidneys preferentially hydroxylate 25-hydroxyvitamin D3 using 24-hydroxylase rather than 25-hydroxyvitamin D3-1-alpha hydroxylase, DHT suppressed the Pgr-mediated 24-hydroxylase expression, and it is important to note that DHT increased the blood 25-hydroxyvitamin D3 levels. These findings uncover an important link between androgens and vitamin D homeostasis and suggest that therapeutic modulation of Pgr may be used to treat vitamin D deficiency and related disorders.