Search Results

You are looking at 1 - 1 of 1 items for

  • Author: B Enberg x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

B Enberg, A Hulthén, C Möller, G Norstedt, and S M Francis


The mechanism by which GH transmits a signal to the nucleus via its membrane-bound receptor is unknown. To study this process, Buffalo rat liver (BRL), rat hepatoma (FAO), human hepatoma (HepG2) and Chinese hamster ovary (CHO) cell lines were transfected with GH receptor cDNA, and stable clones expressing GH receptor mRNA and protein were selected. From previous in vivo studies it is known that GH regulates the expression of the rat hepatic serine protease inhibitor (SPI) 2.1 gene at the transcriptional level. However, in all the cell lines tested, SPI gene expression was less than 0·2% of that measured in rat liver, and GH did not affect the expression of the endogenous SPI gene in GH receptor-expressing cells.

A 45 bp GH-responsive element (GHRE) has previously been defined in the SPI 2.1 gene. A construct containing six repeats of this GHRE was assembled with the thymidine kinase promoter and a chloramphenicol acetyl transferase (CAT) reporter gene. Transient transfection of this reporter gene resulted in GH stimulation of CAT activity in all GH receptor-transfected cell lines. A 33-fold induction was measured in the GH receptor-expressing BRL cells. Induction of CAT activity was observed after 8 h of GH treatment in the BRL-GHR638 cell line. Stable BRL cell lines expressing GH receptors with carboxy-terminal truncations (GHR380 and GHR454) did not show increased CAT activity on GH stimulation. This suggests that more than half of the intracellular domain of the GH receptor is required to activate transcription of the SPI 2.1 gene.

It is concluded that the use of GH receptor-expressing cell lines in combination with the GH-regulated reporter system described here provides a good model for studying intracellular signalling after GH stimulation.