Search Results

You are looking at 1 - 1 of 1 items for

  • Author: A van Marle x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

A B Smit, A van Marle, R van Elk, J Bogerd, H van Heerikhuizen, and W P M Geraerts

ABSTRACT

Although insulins and structurally related peptides are found in vertebrates as well as in invertebrates, it is not clear whether the genes encoding these hormones have emerged from a single ancestral (insulin)-type of gene or, alternatively, have arisen independently through convergent evolution from different types of gene. To investigate this issue, we cloned the gene encoding the molluscan insulin-related peptide III (MIP III) from the freshwater snail, Lymnaea stagnalis. The predicted MIP III preprohormone had the overall organization of preproinsulin, with a signal peptide and A and B chains, connected by two putative C peptides. Although MIP III was found to share key features with vertebrate insulins, it also had unique structural characteristics in common with the previously identified MIPs I and II, thus forming a distinct class of MIP peptides within the insulin superfamily. MIP III is synthesized in neurones in the brain. It is encoded by a gene with the overall organization of the vertebrate insulin genes, with three exons and two introns, of which the second intron interrupts the coding region of the C peptides. Our data therefore demonstrate that in the Archaemetazoa, the common ancestor of the vertebrates and invertebrates, a primordial peptide with a two-chain insulin configuration encoded by a primordial insulin-type gene must have been present.