Search Results

You are looking at 1 - 7 of 7 items for

  • Author: A White x
  • Refine by Access: All content x
Clear All Modify Search
Free access

B Elo, C M Villano, D Govorko, and L A White

The zebrafish model system is one of the most widely used animal models for developmental research and it is now becoming an attractive model for drug discovery and toxicological screening. The completion of sequencing the zebrafish genome and the availability of full-length cDNAs and DNA microarrays for expression analysis, in addition to techniques for generating transgenic lines and targeted mutations, have made the zebrafish model even more attractive to researchers. Recent data indicate that the regulation of glucose metabolism in zebrafish, through the production of insulin, is similar to mammalian models, and many of the genes involved in regulating blood glucose levels have been identified in zebrafish. The data presented here show that adult zebrafish respond to anti-diabetic drugs similarly to mammalian models, by reducing blood glucose levels. Furthermore, we show that the expression of phosphoenolpyruvate carboxykinase (PEPCK), which catalyzes a rate-limiting step in gluconeogenesis and is transcriptionally regulated by glucagon and insulin, is regulated in larval zebrafish similarly to that seen in mammalian systems, and changes in PEPCK expression can be obtained through real-time PCR analysis of whole larval RNA. Taken together, these data suggest that larval zebrafish may be an appropriate model for the examination of glucose metabolism, using PEPCK as an indicator of blood glucose levels.

Restricted access

A. Jamil, J. D. Croxtall, and J. O. White


The effect of two anti-oestrogens, 4-OH tamoxifen and ICI 164,384, on growth and progesterone receptor (PR) concentration was investigated in the endometrial carcinoma cell line, Ishikawa. Growth stimulation in response to 4-OH tamoxifen was antagonized by ICI 164,384, the latter having no agonist effect when used as a single agent. Similarly, ICI 164,384 antagonized oestradiol-stimulated cell growth. PR was significantly increased following treatment with 4-OH tamoxifen, this response being antagonized in the presence of ICI 164,384. Oestradiol increased PR, although to a lesser extent than did 4-OH tamoxifen;the effect of oestradiol on PR was also antagonized by ICI 164,384. Used as a single agent, ICI 164,384 induced a moderate but statistically significant increase in PR, thus demonstrating partial agonist activity. This agonist property of ICI 164,384 may provide a mechanism of maintaining PR, which is down-regulated during conventional progestin therapy, without undesirable mitogenic activity.

Restricted access

A. White, M. F. Stewart, W. E. Farrell, S. R. Crosby, P. M. Lavender, P. R. Twentyman, L. H. Rees, and A. J. L. Clark


Expression of the RNA coding for the ACTH—β-lipotrophin precursor, pro-opiomelanocortin (POMC), has been demonstrated in five human small-cell lung cancer (SCLC) cell lines. Using Northern and slot-blot hybridization analysis of RNA and a bovine POMC cDNA as probe, the processed POMC RNA from SCLC cells was found to be approximately 1350 nucleotides in length, which is larger than that found in the normal human pituitary. Expression of the POMC gene was confirmed by measurement of ACTH precursors secreted by the cells, using a novel two-site immunoradiometric assay based on monoclonal antibodies, which directly quantifies both POMC and pro-ACTH but does not recognize ACTH. Levels of POMC in medium accumulated throughout the growth of the cells, in contrast to POMC RNA which showed a relatively constant level of expression. We conclude that human SCLC cell lines are valuable models for studying the aberrant expression and regulation of the human POMC gene.

Restricted access

W E Farrell, M F Stewart, A J L Clark, S R Crosby, J R E Davis, and A White


In the normal pituitary, glucocorticoids are the principal negative regulator of the pro-opiomelanocortin (POMC) gene which gives rise to the biologically active peptides ACTH and β-endorphin. In Cushing's syndrome, ACTH-secreting pituitary tumours show a degree of glucocorticoid resistance, whilst ACTH-secreting extra-pituitary tumours have an even greater resistance to glucocorticoid excess. In an attempt to understand the mechanism of this phenomenon, we have compared the effects of glucocorticoids on POMC mRNA and peptide secretion in human and mouse corticotroph adenoma cells and in small cell lung carcinoma (SCLC) cells. ACTH precursor peptides were inhibited within 24 h by 25–50 nm hydrocortisone in primary cultures from a human corticotroph adenoma. In the mouse corticotroph adenoma cell line (AtT20), inhibition of both ACTH precursors and ACTH was not observed after 24 h but, by 10 days, glucocorticoids suppressed peptide levels with a concentration causing 50% inhibition of 50 nm hydrocortisone and maximal inhibition at 500 nm hydrocortisone. In marked contrast, there was no response to 500 nm hydrocortisone in the five SCLC cell lines (COR L103, COR L42, COR L24, COR L31, DMS 79) all of which secrete ACTH precursors. However, two of the five SCLC cell lines (COR L31 and DMS 79) were responsive to 1000 nm hydrocortisone. POMC mRNA, quantitated by slot-blot analysis, gave similar results for the five SCLC cell lines, implying that the abnormality may occur at the level of gene expression. When one of the three resistant cell lines (COR L103) was incubated with 2000 nm hydrocortisone or 2000 nm dexamethasone a clear suppression of precursor peptides and POMC mRNA was observed. This suggests that the resistance to glucocorticoid inhibition is relative rather than absolute, implying that the normal mechanism is functioning but impaired. Furthermore, there is at least a 20-fold difference in the responsiveness to glucocorticoid inhibition between pituitary and extra-pituitary tumour cells in vitro, which may signify a difference in the underlying mechanism in these two cell types.

Open access

Gillian A Gray, Christopher I White, Raphael F P Castellan, Sara J McSweeney, and Karen E Chapman

Corticosteroids influence the development and function of the heart and its response to injury and pressure overload via actions on glucocorticoid (GR) and mineralocorticoid (MR) receptors. Systemic corticosteroid concentration depends largely on the activity of the hypothalamic–pituitary–adrenal (HPA) axis, but glucocorticoid can also be regenerated from intrinsically inert metabolites by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), selectively increasing glucocorticoid levels within cells and tissues. Extensive studies have revealed the roles for glucocorticoid regeneration by 11β-HSD1 in liver, adipose, brain and other tissues, but until recently, there has been little focus on the heart. This article reviews the evidence for glucocorticoid metabolism by 11β-HSD1 in the heart and for a role of 11β-HSD1 activity in determining the myocardial growth and physiological function. We also consider the potential of 11β-HSD1 as a therapeutic target to enhance repair after myocardial infarction and to prevent the development of cardiac remodelling and heart failure.

Free access

Iwona J Bujalska, Nicole Draper, Zoi Michailidou, Jeremy W Tomlinson, Perrin C White, Karen E Chapman, Elizabeth A Walker, and Paul M Stewart

Two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) interconvert active cortisol and inactive cortisone. 11β-HSD2 (renal) acts only as a dehydrogenase, converting cortisol to cortisone. 11β-HSD1 (liver) is a bi-directional enzyme in cell homogenates, whereas in intact cells it typically displays oxo-reductase activity, generating cortisol from cortisone. We recently established that cortisone reductase deficiency is a digenic disease requiring mutations in both the gene encoding 11β-HSD1 and in the gene for a novel enzyme located within the lumen of the endoplasmic reticulum (ER), hexose-6-phosphate dehydrogenase (H6PDH). This latter enzyme generates NADPH, the co-factor required for oxo-reductase activity. Therefore, we hypothesized that H6PDH expression may be an important determinant of 11β-HSD1 oxo-reductase activity. Transient transfection of chinese hamster ovary (CHO) cells with 11β-HSD1 resulted in the appearance of both oxo-reductase and dehydrogenase activities in intact cells. Co-transfection of 11β-HSD1 with H6PDH increased oxo-reductase activity whilst virtually eliminating dehydrogenase activity. In contrast, H6PDH had no effect on reaction direction of 11β-HSD2, nor did the cytosolic enzyme, glucose-6-phosphate dehydrogenase (G6PD) affect 11β-HSD1 oxo-reductase activity. Conversely in HEK 293 cells stably transfected with 11β-HSD1 cDNA, transfection of an H6PDH siRNA reduced 11β-HSD1 oxo-reductase activity whilst simultaneously increasing 11β-HSD1 dehydrogenase activity. In human omental preadipocytes obtained from 15 females of variable body mass index (BMI), H6PDH mRNA levels positively correlated with 11β-HSD1 oxo-reductase activity, independent of 11β-HSD1 mRNA levels. H6PDH expression increased 5.3-fold across adipocyte differentiation (P<0.05) and was associated with a switch from 11β-HSD1 dehydrogenase to oxo-reductase activity. In conclusion, H6PDH is a crucial determinant of 11β-HSD1 oxo-reductase activity in intact cells. Through its interaction with 11β-HSD1, H6PDH may represent a novel target in the pathogenesis and treatment of obesity.

Restricted access

Varun S Venkatesh, Patricia K Russell, Barbara Fam White, Michele V Clarke, Suzanne Golub, Salvatore Mangiofico, Christian Haralambous, Julie Lokan, Sof Andrikopoulos, Jeffrey D Zajac, and Rachel A Davey

We previously identified a novel pathway of testosterone action via the androgen receptor (AR) in bone marrow mesenchymal precursor cells (BM-PCs) to negatively regulate fat mass and improve metabolic function in male mice. This was achieved using our PC-AR Gene Replacement mouse model in which the AR is only expressed in BM-PCs and deleted in all other tissues. We hypothesise that the markedly reduced fat mass and increased insulin sensitivity of PC-AR Gene Replacements will confer protection from diet-induced overweight and obesity. To test this, 6-week-old male PC-AR Gene Replacements and controls (WT, global-AR knockouts (KOs)) were fed a chow or high-caloric diet (HCD) for 8 or 18 weeks. Following 8 weeks (short-term) of HCD, WT and Global-ARKOs had markedly increased subcutaneous white adipose tissue (WAT) and retroperitoneal visceral adipose tissue (VAT) mass compared to chow-fed controls. In contrast, PC-AR Gene Replacements were resistant to WAT and VAT accumulation following short-term HCD feeding accompanied by fewer large adipocytes and upregulation of expression of the metabolic genes Acaca and Pnlpa2. Following long-term HCD feeding for 18 weeks, the PC-AR Gene Replacements were no longer resistant to increased WAT and VAT adiposity, however, maintained their improved whole-body insulin sensitivity with an increased rate of glucose disappearance and increased glucose uptake into subcutaneous WAT. In conclusion, the action of testosterone via the AR in BM-PCs to negatively regulate fat mass and improve metabolism confers resistance from short-term diet-induced weight gain and partial protection from long-term diet-induced obesity in male mice.