Search Results

You are looking at 1 - 3 of 3 items for

  • Author: A Okada x
  • Refine by access: All content x
Clear All Modify Search
A Okada
Search for other papers by A Okada in
Google Scholar
PubMed
Close
,
Y Ohta
Search for other papers by Y Ohta in
Google Scholar
PubMed
Close
,
SL Brody
Search for other papers by SL Brody in
Google Scholar
PubMed
Close
,
H Watanabe
Search for other papers by H Watanabe in
Google Scholar
PubMed
Close
,
A Krust
Search for other papers by A Krust in
Google Scholar
PubMed
Close
,
P Chambon
Search for other papers by P Chambon in
Google Scholar
PubMed
Close
, and
T Iguchi
Search for other papers by T Iguchi in
Google Scholar
PubMed
Close

Estrogen regulates proliferation and differentiation of epithelial cells in the mammalian oviduct, but pathways for cell-specific differentiation are not well understood. In the epithelial cells of the developing rat oviduct, we found estrogen receptor (ER) alpha is expressed at birth and persists in all cells through neonatal day (ND) 7 when ciliated cells appear. To determine a specific function of ER and foxj1, a transcription factor known to have fundamental roles in ciliogenesis in the lung, in differentiation of the ciliated epithelial cells, we treated newborn rats from ND 0 to 5 with estradiol-17beta (E2) with and without a selective ER antagonist. E2 enhanced the number of proliferating cells and accelerated the process of epithelial cell differentiation resulting in ciliogenesis by ND 5, and co-treatment with an ER antagonist inhibited these changes. Foxj1 was expressed only in the infundibulum and ampulla (INF/AMP). That expression preceded the appearance of cilia and was induced by E2. Cilia were absent in oviducts of foxj1-deficient mice, indicating that foxj1 plays a critical role in oviductal ciliogenesis. However, we found the presence of cilia in the ERalpha-deficient mouse oviduct. The widespread expression of ERalpha in oviductal epithelium, but restriction of cilia to the INF/AMP regions, and importantly, the presence of cilia in the ERalpha-deficient mice, suggested ER signaling is not essential for ciliated epithelial cell differentiation. These observations demonstrate that, although E2 stimulates the differentiation process of ciliated epithelial cells, foxj1 is directly required for epithelial cell ciliogenesis of the neonatal oviduct.

Free access
A Okada
Search for other papers by A Okada in
Google Scholar
PubMed
Close
,
Y Ohta
Search for other papers by Y Ohta in
Google Scholar
PubMed
Close
,
S Inoue
Search for other papers by S Inoue in
Google Scholar
PubMed
Close
,
H Hiroi
Search for other papers by H Hiroi in
Google Scholar
PubMed
Close
,
M Muramatsu
Search for other papers by M Muramatsu in
Google Scholar
PubMed
Close
, and
T Iguchi
Search for other papers by T Iguchi in
Google Scholar
PubMed
Close

To determine expression and localization of receptors for estrogen (ER), progesterone (PR) and androgen (AR), detailed immunohistochemical evaluations were performed in the Sprague-Dawley rat oviduct during pre- and neonatal development, estrous cycle and pre-implantation period. In addition, real-time RT-PCR studies were conducted to evaluate changes in ERalpha, ERbeta, total PR (PR-A+B), PR-B and AR mRNA expressions. All receptors except for ERbeta were detected in epithelial, and stromal or mesenchymal cells of the fetal and neonatal oviduct, and increased with development. During the estrous cycle and early pregnancy, ERalpha and PR-A+B were expressed in epithelial, stromal and muscle cells throughout the oviduct region, and showed changes in expression predominantly in the isthmus. Only a few epithelial cells in the infundibulum (inf) and ampulla (AMP) showed ERbeta staining. AR was detected in stromal and muscle cells throughout the oviduct region, and in epithelial cells of the inf/AMP. Taken together, ERalpha, PR-A+B and AR were detected in the epithelium of the inf/AMP region, but all of these receptors were expressed in a distinct subset of epithelial cells which were negative for beta-tubulin IV, a ciliated epithelial cell marker. These results contribute to a better understanding of the respective roles of ERs, PRs and AR in the rat oviduct.

Free access
A Okada
Search for other papers by A Okada in
Google Scholar
PubMed
Close
,
Y Ohta
Search for other papers by Y Ohta in
Google Scholar
PubMed
Close
,
DL Buchanan
Search for other papers by DL Buchanan in
Google Scholar
PubMed
Close
,
T Sato
Search for other papers by T Sato in
Google Scholar
PubMed
Close
,
S Inoue
Search for other papers by S Inoue in
Google Scholar
PubMed
Close
,
H Hiroi
Search for other papers by H Hiroi in
Google Scholar
PubMed
Close
,
M Muramatsu
Search for other papers by M Muramatsu in
Google Scholar
PubMed
Close
, and
T Iguchi
Search for other papers by T Iguchi in
Google Scholar
PubMed
Close

To evaluate ontogenetic expression and localization of estrogen receptor (ER) alpha and beta in fetal female rat reproductive tract, competitive RT-PCR and immunohistochemistry were performed. Expression levels for Mullerian ERalpha, ERbeta1 and ERbeta2 mRNAs were determined by competitive RT-PCR. ERalpha expression on gestational day (GD) 15 x 5 increased 4 x 4-fold by GD 21 x 5, whereas both ERbeta1 and ERbeta2 gene expression were maintained at lower constant levels compared with ERalpha during development. ER immunolocalization was evaluated within three regions along the Mullerian duct axis; these were proximal, middle and caudal, which differentiate into oviduct, uterus and upper vagina respectively. Nuclear ERalpha was localized predominantly in proximal Mullerian epithelium, and middle and caudal Mullerian mesenchyme on GDs 15 x 5-21 x 5. Staining intensity for ERalpha increased with development in all regions. However, ERbeta immunoreactivity was not detected in any region during prenatal life after separate staining with three different polyclonal anti-rat ERbeta antibodies. These findings provide fundamental information critical for clarifying the species-specific physiological roles of ER subtypes during fetal development and for investigating the tissue-specific mechanisms underlying the prenatal response to estrogen and estrogen receptor agonists.

Free access