Search Results

You are looking at 101 - 110 of 393 items for

  • Abstract: Adenoma x
  • Abstract: Carcinoma x
  • Abstract: Cancer x
  • Abstract: Tumour x
  • Abstract: Metastasis x
  • Abstract: Pheochromocytoma x
  • Abstract: MEN* x
  • Abstract: paraganglioma x
Clear All Modify Search
Restricted access

J. M. Johnston, D. F. Wood, E. A. Bolaji and D. G. Johnston

ABSTRACT

Some pituitary tumours respond to dopamine by decreasing the release of prolactin and/or GH and by inhibition of tumour growth. Certain tumours are unresponsive. Dopamine D2 receptor high-affinity binding is impaired in these tumours, and the rat GH3 cell line behaves in a similar way. The hypothesis that the dopamine-binding defect results from impaired D2 receptor gene expression has been tested in the present study. On Northern blots, D2 receptor mRNA was present in both normal rat pituitary cells and in GH3 cells. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis identified a putative D2 receptor protein in normal and GH3 cell membranes. The lack of effect of dopamine in GH3 cells does not reflect the absence of D2 receptor gene expression.

Free access

James W Antoon, William D Meacham, Melyssa R Bratton, Evelyn M Slaughter, Lyndsay V Rhodes, Hasina B Ashe, Thomas E Wiese, Matthew E Burow and Barbara S Beckman

Recently, crosstalk between sphingolipid signaling pathways and steroid hormones has been illuminated as a possible therapeutic target. Sphingosine kinase (SK), the key enzyme metabolizing pro-apoptotic ceramide to pro-survival sphingosine-1-phosphate (S1P), is a promising therapeutic target for solid tumor cancers. In this study, we examined the ability of pharmacological inhibition of S1P formation to block estrogen signaling as a targeted breast cancer therapy. We found that the Sphk1/2 selective inhibitor (SK inhibitor (SKI))-II, blocked breast cancer viability, clonogenic survival and proliferation. Furthermore, SKI-II dose-dependently decreased estrogen-stimulated estrogen response element transcriptional activity and diminished mRNA levels of the estrogen receptor (ER)-regulated genes progesterone receptor and steroid derived factor-1. This inhibitor binds the ER directly in the antagonist ligand-binding domain. Taken together, our results suggest that SKIs have the ability to act as novel ER signaling inhibitors in breast carcinoma.

Free access

K J Dudley, K Revill, R N Clayton and W E Farrell

Investigation of the epigenome of sporadic pituitary tumours is providing a more detailed understanding of aberrations that characterise this tumour type. Early studies, in this and other tumour types adopted candidate-gene approaches to characterise CpG island methylation as a mechanism responsible for or associated with gene silencing. However, more recently, investigators have adopted approaches that do not require a priori knowledge of the gene and transcript, as example differential display techniques, and also genome-wide, array-based approaches, to ‘uncover’ or ‘unmask’ silenced genes. Furthermore, through use of chromatin immunoprecipitation as a selective enrichment technique; we are now beginning to identify modifications that target the underlying histones themselves and that have roles in gene-silencing events. Collectively, these studies provided convincing evidence that change to the tumour epigenome are not simply epiphenomena but have functional consequences in the context of pituitary tumour evolution. Our ability to perform these types of studies has been and is increasingly reliant upon technological advances in the genomics and epigenomics arena. In this context, other more recent advances and developing technologies, and, in particular, next generation or flow cell re-sequencing techniques offer exciting opportunities for our future studies of this tumour type.

Restricted access

M J Campbell, E Elstner, S Holden, M Uskokovic and H P Koeffler

ABSTRACT

We have synthesized and studied the ability of a series of seven novel 1α,25(OH)2 vitamin D3 analogues to inhibit clonal growth of prostate cancer cells (LNCaP, PC-3 and DU-145). Addition of double and triple bonds to the C/D ring (C-16) and side chain (C-22 and C-23) as well as lengthening of the side chain were important for enhanced activity against LNCaP and PC-3. Reorientation of the side chain in the 20-epi configuration resulted in analogues that were extremely potent only against LNCaP (ED50 ≈ 5 × 10−11 m). Compounds with six fluorines on the end of the side chain were very active against both PC-3 and LNCaP (ED50 ≈ 2 × 10−8 m). DU-145 cells were relatively resistant to compounds with all of these modifications, but removal of C-19 (e.g. 1,25(OH)2-16-ene-23-yne-26,27-F6-19-nor-D3) resulted in an analogue that was inhibitory against all three prostate cell lines. Further analysis showed that pulse exposure (3 days, 10−7 m) to this analogue was enough to inhibit clonal growth of PC-3 cells by 50%. The same exposure also induced cell cycle arrest of all three cell lines, accompanied by upregulated protein expression of the cyclin-dependent kinase inhibitor (CDKI) known as p21waf1 in all three cell lines, and the CDKI known as p27kip1 in LNCaP cells. Associated with upregulation of these CDKIs, partial differentiation occurred as measured by increased expression of both prostate-specific antigen by LNCaP cells and E-cadherin, a cell adhesion protein that may act as a putative tumour suppressor (LNCaP and PC-3 cells). In summary, this is the first report of a potent series of 19-nor-vitamin D3 analogues with the ability to inhibit proliferation of LNCaP, PC-3 and DU-145 prostate cancer cell lines. These compounds may mediate their potent anti-proliferative activities through a cell cycle arrest pathway.

Free access

Mark Kidd, Geeta N Eick, Irvin M Modlin, Roswitha Pfragner, Manish C Champaneria and John Murren

Small intestinal carcinoids (SICs) are the most prevalent gastrointestinal carcinoid and characterized by local invasion metastasis and protean symptomatology. The proliferative and secretory regulation of the cell of origin, the enterochromaffin (EC) cell has not been characterized. The absence of either a pure preparation of normal EC cells or human EC carcinoid cell lines has hindered the development of therapeutic agents. We therefore further characterized the neoplastic SIC cell line, KRJ-I by assessing its secretory (serotonin (5-HT)) and proliferative responses and defining its log growth phase transcriptome. Electron microscopy demonstrated oval, lobulated nuclei and substance P, and 5-HT-positive cytoplasmic vesicles. RT-PCR detected transcripts for chromogranin A (CHGA), VMAT1 (SLC18A1), tryptophan hydroxylase (TPH1), substance P (TAC1), guanylin (GUCA2A), and SERT (SLC6A4). By immunohistochemistry, all cells were positive for CHGA, SERT, VMAT1, and TPH1. Transcriptome analysis (Affymetrix U133 Plus chips) identified somatostatin SSTR2/3, adrenergic α1C and β1, dopamine D2, nicotinic-type cholinergic A5, A6, B1, muscarinic acetylcholine M4, and 5-HT-2A receptors. The presence of transcripts for SSTR1, SSTR2, and SSTR3 receptors was confirmed by RT-PCR and sequencing. Isoproterenol (ISO) resulted in a dose-dependent increase in intracellular cAMP (EC50=340 nM) and 5-HT (EC50=81 nM) which was completely inhibited by the cAMP antagonist 2′,5′-dideoxyadenosine (10 μM). Preincubation with a SSTR agonist, lanreotide, inhibited Ip-stimulated 5-HT secretion (IC50=420 nM). Both lanreotide (10 nM) and rapamycin (50 nM) inhibited proliferation (20±12 and 35±5% respectively) in serum-free medium whereas gefitinib (1 nM–10 μM) inhibited proliferation at micromolar concentrations. KRJ-I is a neoplastic EC cell line that can be used as an in vitro model of SICs as it will allow elucidation and clarification of the secretory and proliferative mechanism(s) of neoplastic EC cells and the molecular signatures that characterize each of these responses.

Free access

MP Rounseville and TP Davis

A hallmark of small cell lung carcinoma (SCLC) is the expression of autocrine growth factors such as neurotensin and gastrin-releasing peptide, which bind to cellular receptors and stimulate cell division. The biological activity of autocrine growth factors requires the concurrent expression of prohormone convertases that cleave the growth factors to their active form, suggesting the expression of these genes is linked in SCLCs. RNase protection assays were used to detect the expression of autocrine growth factor and prohormone convertase mRNAs in a panel of lung cancer cell lines. These mRNAs are coexpressed in SCLC and lung carcinoid cell lines, but not in normal lung epithelium or in non-small cell lung cancers. These findings, together with earlier results from our laboratory, suggest the expression of prohormone convertases has an important role in the development and maintenance of the SCLC phenotype and that autocrine growth factor and prohormone convertase genes respond to a common transcriptional activator in SCLC.

Free access

Chen-Tian Shen, Wei-Jun Wei, Zhong-Ling Qiu, Hong-Jun Song, Xin-Yun Zhang, Zhen-Kui Sun and Quan-Yong Luo

More aggressive thyroid cancer cells show a higher activity of glycometabolism. Targeting cancer cell metabolism has emerged as a novel approach to prevent or treat malignant tumors. Glucose metabolism regulation effect of metformin in papillary thyroid cancer was investigated in the current study. Human papillary thyroid carcinoma (PTC) cell lines BCPAP and KTC1 were used. Cell viability was detected by CCK8 assay. Glucose uptake and relative gene expression were measured in metformin (0–10 mM for 48 h)-treated cells by 18F-FDG uptake assay and western blotting analysis, respectively. MicroPET/CT imaging was performed to detect 18F-FDG uptake in vivo. After treatment with metformin at 0, 2.5, 5 and 10 mM for 48 h, the ratio of p-AMPK to total AMPK showed significant rising in a dose-dependent manner in both BCPAP and KTC1, whereas p-AKT and p-mTOR expression level were downregulated. 18F-FDG uptake reduced after metformin treatment in a dose-dependent manner, corresponding to the reduced expression level of HK2 and GLUT1 in vitro. Xenograft model of PTC using BCPAP cells was achieved successfully. MicroPET/CT imaging showed that in vivo 18F-FDG uptake decreased after treatment with metformin. Immunohistochemistry staining further confirmed the reduction of HK2 and GLUT1 expression in the tumor tissue of metformin-treated PTC xenograft model. In conclusion, metformin could reduce glucose metabolism of PTC in vitro and in vivo. Metformin, by targeting glycometabolism of cancer cells, could be a promising adjuvant therapy alternative in the treatment modality of advanced thyroid carcinoma.

Restricted access

R. K. Iles, B. H. Czepulkowski, B. D. Young and T. Chard

ABSTRACT

The β-subunit of human chorionic gonadotrophin (hCG) is coded on chromosome 19 by the β-hCG-hLH gene cluster. Genomic DNA has been isolated from bladder tumour cell lines which ectopically express β-hCG. The β-hCG—hLH gene cluster was probed for possible rearrangement or amplification and cells karyotyped for chromosome 19 abnormalities. No rearrangement or amplification of the gene cluster and no consistent abnormalities of chromosome 19 were found. The expression of β-hCG by bladder tumours is therefore likely to be the result of altered gene regulation and not a rearrangement or amplification of this gene cluster.

Free access

Maria Rossing, Rehannah Borup, Ricardo Henao, Ole Winther, Jonas Vikesaa, Omid Niazi, Christian Godballe, Annelise Krogdahl, Martin Glud, Christian Hjort-Sørensen, Katalin Kiss, Finn Noe Bennedbæk and Finn Cilius Nielsen

The molecular determinants of thyroid follicular nodules are incompletely understood and assessment of malignancy is a diagnostic challenge. Since microRNA (miRNA) analyses could provide new leads to malignant progression, we characterised the global miRNA expression in follicular adenoma (FA) and follicular carcinoma (FC). Comparison of carcinoma and adenoma with normal thyroid revealed 150 and 107 differentially expressed miRNAs respectively. Most miRNAs were down-regulated and especially miR-199b-5p and miR-144 which were essentially lost in the carcinomas. Integration of the changed miRNAs with differentially expressed mRNAs demonstrated an enrichment of seed sites among up-regulated transcripts encoding proteins implicated in thyroid tumourigenesis. This was substantiated by the demonstration that pre-miR-199b reduced proliferation when added to cultured follicular thyroid carcinoma cells. The down-regulated miRNAs in FC exhibited a substantial similarity with down-regulated miRNAs in anaplastic carcinoma (AC) and by gene set enrichment analysis, we observed a significant identity between target mRNAs in FC and transcripts up-regulated in AC. To examine the diagnostic potential of miRNA expression pattern in distinguishing malignant from benign nodules we employed a supervised learning algorithm and leave-one-out-cross-validation. By this procedure, FA and FC were identified with a negative predicted value of 83% (data generated by microarray platform) and of 92% (data generated by qRT-PCR platform). We conclude that follicular neoplasia is associated with major changes in miRNA expression that may promote malignant transformation by increasing the expression of transcripts encoding tumourigenic factors. Moreover, miRNA profiling may facilitate the diagnosis of carcinoma vs adenoma.

Restricted access

Y. de Keyzer, M.-F. Rousseau-Merck, J.-P. Luton, F. Girard, A. Kahn and X. Bertagna

ABSTRACT

Phaeochromocytoma is an occasional cause of the ectopic ACTH syndrome. The mechanisms of proopiomelanocortin (POMC) gene expression were analysed in 11 human tumours not associated with Cushing's syndrome, by detecting and characterizing the POMC mRNA. A DNA probe corresponding to most of the protein-coding region of the third exon was used in Northern blot studies of total and poly(A)+ RNA. All tumours contained a short (800 bases) mRNA species different from the 1200 base mRNA species of the human pituitary. This short mRNA was also present in the normal adrenal, where S1 mapping showed that it resulted from transcription initiation within the third exon. However, in two tumours, equivalent amounts of the 1200 base mRNA were also present, and in one of them a third POMC mRNA of approximately 1450 bases was detected. These data show that POMC gene expression occurs in all phaeochromocytomas. It is suggested that excess production of the 1200 bases (or the larger, 1450 base) mRNA in some tumours may be responsible for the rare occurrence of the ectopic ACTH syndrome.