Search Results

You are looking at 31 - 40 of 287 items for

  • Abstract: Schlerostin x
  • Abstract: Vitamin D x
  • Abstract: Calcium x
  • Abstract: Mineral x
  • Abstract: Skeletal x
  • Abstract: Osteo* x
  • Abstract: Wnt x
  • Abstract: Growth Plate x
  • Abstract: Bone x
Clear All Modify Search
Free access

WH Huang, AT Lau, LL Daniels, H Fujii, U Seydel, DJ Wood, JM Papadimitriou and MH Zheng

Increasing evidence suggests that estrogen deficiency in women promotes the expansion of populations of bone marrow cells that differentiate into osteoclasts under the influence of osteotropic hormones and local factors. A progressive cytoplasmic accumulation of osteoclastic bone resorbing enzymes, such as tartrate-resistant acid phosphatase (TRACP) and carbonic anhydrase II (CA II), characterizes osteoclast differentiation. To evaluate the possibility that estrogen may have a direct effect on osteoclast precursor cells, we investigated the mRNA levels of estrogen receptor a (ERa), TRACP and CA II genes in neonatal rat bone imprints by fluorescence in situ hybridization and confocal microscopy. Morphological assessment of bone imprints has shown that the putative mononuclear osteoclast precursor cells (MOPC) display strongly basophilic cytoplasm and a low nuclear/cytoplasmic ratio, while some of these cells possess pale-staining ruffled border regions similar to those observed in osteoclasts. Both CA II and TRACP mRNAs were detected in putative MOPC as well as multinuclear osteoclasts. The gene transcripts were mainly located in the cytoplasm of these cells. To determine whether these putative MOPC possess ER mRNA, a 637 base pair antisense ER riboprobe was used. The results indicated that MOPC which show TRACP reactivity express high levels of ER gene transcripts in their cytoplasm. In contrast, only a few multinuclear osteoclasts in the bone imprints possessed ER gene transcripts. Interestingly, the levels of ER mRNA in these multinuclear osteoclasts were very low compared with those in the putative MOPC. Treatment with RNase prior to hybridization resulted in a significant loss of signal in these cells. The results of these studies suggest that estrogen may have a direct role in modulating the recruitment of osteoclast precursor cells during osteoclastogenesis.

Open access

H H Farman, J Wu, K L Gustafsson, S H Windahl, S H Kim, J A Katzenellenbogen, C Ohlsson and M K Lagerquist

Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-10) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-10 males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-10 mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis.

Free access

Evgeny Weinberg, Tal Maymon and Miron Weinreb

Diabetic humans and animals exhibit lower bone mass and healing, resulting from diminished bone formation. We have recently reported that type 1 diabetic rats have fewer bone marrow osteoprogenitor cells, and since the formation of advanced glycation end products (AGEs) in bone increases in diabetes, we explored possible mechanisms involved in AGE-induced apoptosis of rat bone marrow stromal cells (BMSCs). BMSCs isolated from 4-month-old rats were exposed to 10–400 μg/ml AGE–BSA for 16 h and apoptosis was quantified with PI/annexin V staining and flow cytometry. Signaling mechanisms were evaluated by preincubating the cells with appropriate inhibitors. The formation of reactive oxygen species (ROS) was quantified by flow cytometric analysis of DCFDA fluorescence and the expression of genes by RT-PCR analysis. AGE–BSA at a concentration of 400 μg/ml increased the apoptosis of BMSCs two- to threefold, an effect completely blocked by a pan-caspase inhibitor. BSA or high concentrations of glucose had no effect. AGE–BSA-induced BMSC apoptosis was attenuated by a p38 inhibitor but not by an NF-κB inhibitor. Treatment with AGE–BSA induced the expression of several pro-apoptotic ligands and receptors, most notably tumor necrosis factor α (TNFα), TRAIL, lymphotoxin alpha, CD40, and TNFR2. Furthermore, AGE–BSA-induced apoptosis was completely blocked by pirfenidone, an inhibitor of TNFα production/secretion. Finally, AGE–BSA increased the production of ROS in BMSCs, and its apoptogenic effect was blocked by the antioxidant N-acetylcysteine (N-acetyl-l-cysteine). Thus, AGE–BSA increases the apoptosis of rat BMSCs via the activation of caspases, involving TNFα production/secretion, p38 MAPK signaling, and oxidative stress. We propose that increased protein glycation, such as that occurring under hyperglycemia, causes the apoptosis of BMSCs, which might significantly contribute to the development of osteopenia in diabetic animals.

Free access

Charit Taneja, Sakshi Gera, Se-Min Kim, Jameel Iqbal, Tony Yuen and Mone Zaidi

FSH has a primary function in procreation, wherein it induces estrogen production in females and regulates spermatogenesis in males. However, in line with our discoveries over the past decade of non-unitary functions of pituitary hormones, we and others have described hitherto uncharacterized functions of FSH. Through high-affinity receptors, some of which are variants of the ovarian FSH receptor (FSHR), FSH regulates bone mass, adipose tissue function, energy metabolism, and cholesterol production in both sexes. These newly described actions of FSH may indeed be relevant to the pathogenesis of bone loss, dysregulated energy homeostasis, and disordered lipid metabolism that accompany the menopause in females and aging in both genders. We are therefore excited about the possibility of modulating circulating FSH levels toward a therapeutic benefit for a host of age-associated diseases, including osteoporosis, obesity and dyslipidemia, among other future possibilities.

Free access

N Leclerc, CA Luppen, VV Ho, S Nagpal, JG Hacia, E Smith and B Frenkel

Glucocorticoid (GC) treatment for the management of autoimmune and inflammatory diseases is associated with decreased bone formation and increased risk for fracture. In MC3T3-E1 cell cultures, 0.1-1 microM dexamethasone (DEX) arrests development of the osteoblast phenotype when administration commences at a commitment stage around the time of confluency. To gain new insights into GC-induced osteoporosis, we performed microarray-based gene expression analysis of GC-arrested MC3T3-E1 cultures, 2.5 days after the administration of DEX. Of the >12 000 transcripts interrogated, 74 were up-regulated and 17 were down-regulated by at least 2.5-fold (P < or = 0.05). Some of these genes, such as Mmp13, Serum/GC-regulated kinase and Tieg, have previously been reported as GC-responsive. Others are shown here for the first time to respond to GCs. DEX strongly repressed Krox20/Egr2 at both the mRNA and the protein level. This is especially significant because mice lacking this transcription factor develop osteoporosis. The data also suggest that the bone morphogenetic protein (BMP) pathway, which is involved in regulating bone mass, and other pathways that influence BMP signaling, are abrogated by GCs: (i) DEX increased the mRNA levels of the BMP antagonists Follistatin and Dan; (ii) DEX increased the levels of p21 Rasgap3 and Ptpn16/MKP-1 mRNAs, negative regulators of the MAP kinase pathway; and (iii) DEX decreased Cox mRNA levels. DEX also increased thrombospondin mRNA levels, which negatively regulate bone mass in vivo, as well as the adipocytic marker Fkbp51. These and other observations disclose novel gene targets, whose regulation by GCs in osteoblasts may shed light on and provide new therapeutic approaches to osteoporosis.

Free access

Geetika Kharkwal, Vishal Chandra, Iram Fatima and Anila Dwivedi

Ormeloxifene (Orm), a triphenylethylene compound, has been established as a selective estrogen receptor modulator (SERM) that suppresses the ovariectomy-induced bone resorption in rats. However, the precise mechanism underlying the bone-preserving action of Orm remains unclear. In this study, we evaluated the effect of Orm on osteoclast formation induced by receptor activator of nuclear factor κB ligand (RANKL) in the murine macrophage cell line RAW264.7. We also explored the mechanism of action of Orm by studying the RANKL-induced signaling pathways required for osteoclast differentiation. We found that Orm inhibited osteoclast formation from murine macrophage RAW264.7 cells induced by RANKL in a dose-dependent manner. Orm was able to abolish RANKL-induced reactive oxygen species (ROS) elevation and inhibited the transcriptional activation of two key RANKL-induced transcription factors namely activator protein-1 (AP-1) and NF-κB through mechanisms involving MAPKs. Activation of two MAPKs, i.e. ERK (MAPK1) and JNK (MAPK8), was alleviated by Orm effectively, which subsequently affected the activation of c-Jun and c-Fos, which are the essential components of the AP-1 transcription complex. Taken together, our results demonstrate that Orm potentially inhibits osteoclastogenesis by inhibiting ROS generation and thereby suppressing the activation of ERK1/2 (MAPK3/MAPK1) and JNK (MAPK8) and transcription factors (NF-κB and AP-1), which subsequently affect the regulation of osteoclastogenesis. These results provide a possible mechanism of action of Orm in regulating osteoclastogenesis, thereby supporting the beneficial bone-protective effects of this compound.

Free access

M Watanabe, ER Simpson, N Pathirage, S Nakajin and CD Clyne

A number of clinical studies have highlighted the importance of estrogen in bone growth and maintenance in men and postmenopausal women. In these instances, estrogen is synthesized locally within bone tissue by aromatase, encoded by the CYP19 gene. The mechanisms regulating aromatase expression in bone, however, are unclear. In this work we characterized the expression of aromatase activity and gene transcripts in the human fetal osteoblastic cell line, SV-HFO. Aromatase activity and gene transcript expression were stimulated by dexamethasone. Oncostatin M strongly stimulated aromatase expression in synergy with dexamethasone. These factors induced CYP19 transcripts that included the sequence of exon I.4 in their 5'UTR. Consistent with this, a reporter construct harboring the genomic sequence of the promoter region of exon I.4 (promoter I.4) was also activated by dexamethasone and oncostatin M. 5' deletion and mutation analysis revealed important roles for a glucocorticoid response element, an interferon gamma activating sequence and a putative binding site for Sp1. Transfection of exogenous glucocorticoid receptor, STAT3 or Sp1 increased promoter activity, indicating a potential role for these transcription factors in regulating aromatase expression in SV-HFO cells. These data suggest that the SV-HFO cell line is a valuable model with which to elucidate the mechanisms regulating local estrogen synthesis in osteoblasts.

Free access

Aran Son, Namju Kang, Jung Yun Kang, Ki Woo Kim, Yu-Mi Yang and Dong Min Shin

Mechanical stress plays an important role in the regulation of bone turnover. However, the mechanism underlying hypo-osmotic stress-induced cellular response in osteoblasts remains poorly understood. In this study, we investigated the effect of hypotonic stress on the expression of bone remodeling factors, including the receptor activator of nuclear factor-kappa B ligand (RANKL) and the nuclear factor of activated T cells type c1 (NFATc1) in primary mouse osteoblasts and MC3T3-E1 cells. Hypo-osmotic stress induced significant increases in RANKL mRNA expression and intracellular Ca2+ concentration ([Ca2+]i) from the extracellular space. Hypo-osmotic stress-induced effects on [Ca2+]i and RANKL and NFATc1 protein expression were decreased by antagonists of transient receptor potential melastatin 3 (TRPM3) and vanilloid 4 (TRPV4). Agonists of TRPM3 and TRPV4 activated [Ca2+]i and RANKL and NFATc1 protein expression. Furthermore, genetic suppression of Trpm3 and Trpv4 reduced hypo-osmotic stress-induced effects in mouse osteoblasts. These results suggest that hypo-osmotic stress induces increases in [Ca2+]i through TRPM3 and TRPV4 to regulate RANKL and NFATc1 expression in mouse osteoblastic cells and that mechanical stress-activated TRP channels may play a critical role in bone remodeling.

Free access

Ralph A Zirngibl, Janet S M Chan and Jane E Aubin

We previously demonstrated that the orphan nuclear receptor, estrogen receptor-related receptor α (ERRα) is highly expressed in osteoblasts and osteoclasts, regulates osteogenesis and expression of osteoblast-associated markers in the rat calvaria cell differentiation system, and is dysregulated in the rat ovariectomy model of postmenopausal osteoporosis. There are conflicting published data on the transcriptional regulation by ERRα of the gene for osteopontin (OPN), an extracellular matrix protein required in bone remodeling, and a potential direct target mediating ERRα effects in bone. We therefore readdressed OPN gene regulation by ERRα in both osteoblastic (rat osteosarcoma ROS17/2.8 cells) and non-osteoblastic (HeLa) cell lines using a mouse proximal 2 kb OPN promoter fragment. A minimal OPN promoter fragment spanning from −56 to +9 bp is activated in HeLa cells but repressed it in ROS17/2.8 cells. Adenine scanning mutagenesis revealed the presence of a non-canonical ERRα response element in this minimal promoter. Surprisingly, prototypical inactivating mutations in the activation function 2 (AF2) domain or a naturally occurring allelic variant of ERRα (ERRαH408) were all better activators than wild-type ERRα in HeLa cells, activities that were generally paralleled by repression in ROS17/2.8 cells. Finally, we found that the N-terminus of ERRα harbors a repressor domain that acts in a cell context-dependent manner. We conclude that OPN is an ERRα target gene whose promoter is regulated by ERRα in a cell context-dependent manner and that a predicted silencing mutation in AF2 or a more flexible helix 12 increases ERRα transcriptional activity, effects with implications for ERRα as a therapeutic target in bone.

Free access

S Sivagurunathan, C N Pagel, L H Loh, L C Wijeyewickrema, R N Pike and E J Mackie

Thrombin stimulates expression of interleukin 6 and cyclooxygenase 2 by osteoblasts, both of which enhance osteoblast-mediated osteoclast differentiation by increasing the ratio of receptor activator of nuclear factor κB ligand (RANKL) expression to that of osteoprotegerin (OPG) in osteoblasts. We hypothesised that thrombin would also increase this ratio and thereby stimulate osteoclast differentiation in mixed cultures of osteoblastic cells and osteoclast precursors. In primary mouse osteoblasts, but not in bone marrow stromal cells, thrombin increased the ratio of RANKL to OPG expression. Thrombin inhibited differentiation of osteoclasts, defined as tartrate-resistant acid phosphatase (TRAP)-positive cells with three or more nuclei, in mouse bone marrow cultures treated with osteoclastogenic hormones; this effect was not mediated by the major thrombin receptor, protease-activated receptor 1, nor did it require thrombin's proteolytic activity. Thrombin also caused a decrease in the number of TRAP-positive cells with fewer than three nuclei. Thrombin (active or inactive) also inhibited osteoclast differentiation and bone resorption, respectively, in cultures of mouse spleen cells and human peripheral blood mononuclear cells induced to undergo osteoclastogenesis by treatment with RANKL and macrophage colony-stimulating factor. Osteoclast differentiation in spleen cells was inhibited when they were exposed to thrombin from days 0 to 3 or 3 to 5 of culture but not days 5 to 7 when most fusion occurred. Thrombin inhibited expression of RANK by spleen cells. These observations indicate that, although thrombin stimulates production of osteoclastogenic factors by osteoblastic cells, it inhibits the early stages of RANKL-induced osteoclast differentiation through a direct effect on osteoclast precursors that does not require thrombin's proteolytic activity.