Search Results

You are looking at 11 - 20 of 287 items for

  • Abstract: Schlerostin x
  • Abstract: Vitamin D x
  • Abstract: Calcium x
  • Abstract: Mineral x
  • Abstract: Skeletal x
  • Abstract: Osteo* x
  • Abstract: Wnt x
  • Abstract: Growth Plate x
  • Abstract: Bone x
Clear All Modify Search
Free access

Kathryn L Auld, Stephen P Berasi, Yan Liu, Michael Cain, Ying Zhang, Christine Huard, Shoichi Fukayama, Jing Zhang, Sung Choe, Wenyan Zhong, Bheem M Bhat, Ramesh A Bhat, Eugene L Brown and Robert V Martinez

Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERR α expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.

Free access

Frank Driessler and Paul A Baldock

On initial inspection, bone remodeling, the process whereby the skeleton adapts through time, appears to be relatively simple. Two cell types, the bone-forming osteoblasts and the bone-resorbing osteoclasts, interact to keep bone mass relatively stable throughout adult life. However, the complexity of the regulatory influences on these cells is continuing to expand our understanding of the intricacy of skeletal physiology and also the interactions between other organ systems and bone. One such example of the broadening of understanding in this field has occurred in the last decade with study of the central, neural regulation of bone mass. Initial studies of an adipose-derived hormone, leptin, helped define a direct, sympathetic pathway involving efferent neural signals from the hypothalamus to receptors on the osteoblast. Since the leptin-mediated pathway has been continuously modified to reveal a complex system involving neuromedin U, cocaine- and amphetamine-related transcript and serotonin interacting within the hypothalamus and brainstem to regulate both bone formation and resorption in cancellous bone, a number of other systems have also been identified. Neuropeptide Y, acting through hypothalamic Y2 receptors, is capable of skeleton-wide modulation of osteoblast activity, with important coordination between body weight and bone mass. Cannabinoids, acting through central cannabinoid receptor 1 and bone cell cannabinoid receptor 2 receptors, modulate osteoclast activity, thereby identifying pathways active on both aspects of the bone remodeling process. This review explores the key central pathways to bone and explores the complexity of the interactions being revealed by this emergent field of research.

Free access

Bettina Sederquist, Paola Fernandez-Vojvodich, Farasat Zaman and Lars Sävendahl

Children with inflammatory diseases usually display abnormal growth patterns as well as delayed puberty. This is a result of several factors related to the disease itself, such as malnutrition, hypercortisolism, and elevated levels of pro-inflammatory cytokines. These factors in combination with glucocorticoid treatment contribute to growth retardation during chronic inflammation by systemically affecting the major regulator of growth, the GH/IGF1 axis. However, recent studies have also shown evidence of a direct effect of these factors at the growth plate level. In conditions of chronic inflammation, pro-inflammatory cytokines are upregulated and released into the circulation. The most abundant of these, tumor necrosis factor α, interleukin 1β (IL1β), and IL6, are all known to directly act on growth plate cartilage to induce apoptosis and thereby suppress bone growth. Both clinical and experimental studies have shown that growth retardation can partly be rescued when these cytokines are blocked. Therefore, therapy modulating the local actions of these cytokines may be effective for preventing growth failure in patients with chronic inflammatory disorders. In this review, we report the current knowledge of inflammatory cytokines and their role in regulating bone growth.

Restricted access

P H Watson, A J Watson and A B Hodsman


The technique of reverse transcription-PCR for mRNA phenotyping was applied to total RNA isolated from the two compartments of cancellous bone, namely trabecular bone and hematopoitic tissue or marrow. The pattern of gene expression for ten different growth factor ligands and five growth factor receptors was examined in total RNA isolated from the two compartments of cancellous bone of the female rat distal femur. Our results show that transcripts encoding IGF-I, IGF-II, transforming growth factor-β1 (TGF-β1), TGF-α, basic fibroblast growth factor, platelet-derived growth factor A and osteocalcin are detectable in samples from both trabeculae and marrow. Expression of epidermal growth factor (EGF) was confined to samples from trabeculae while nerve growth factor expression was only detected in marrow. Transcripts encoding insulin were not detected in any of the bone-derived samples in this study. Samples from cancellous bone trabeculae and marrow both showed evidence of expression of the genes encoding receptors for IGF-I, parathyroid hormone (PTH)/PTH-related protein and insulin. Neither compartment of cancellous bone contained transcripts encoding the receptor for IGF-II. Transcripts encoding the EGF receptor were detected in samples from cancellous bone marrow and not trabeculae as has been previously reported. These patterns of growth factor ligand and receptor gene expression suggest that it is likely that both autocrine and paracrine regulatory circuits are established in cancellous bone. This study also demonstrated the feasibility of assessing the expression of multiple genes from the small samples of total RNA obtained from separated tissues of cancellous bone. This is the first time that growth factor gene expression has been examined in separated trabeculae and marrow from cancellous bone and this approach will allow a more detailed analysis of molecular events in cancellous bone as opposed to whole bone or extracts of isolated and cultured bone cells.

Free access

Siyi Zhu, Hongchen He, Chengfei Gao, Guojing Luo, Ying Xie, Haiming Wang, Li Tian, Xiang Chen, Xijie Yu and Chengqi He

We examined the effects of tumor necrosis factor-α (TNFα) and interleukin-6 (IL6) gene knockout in preserving the bone loss induced by ovariectomy (OVX) and the mechanisms involved in bone metabolism. Twenty female wild-type (WT), TNFα-knockout (TNFα−/−) or IL6-knockout (IL6−/−) mice aged 12 weeks were sham-operated (SHAM) or subjected to OVX and killed after 4 weeks. Bone mass and skeletal microarchitecture were determined using micro-CT. Bone marrow stromal cells (BMSCs) from all three groups (WT, TNFα−/− and IL6−/−) were induced to differentiate into osteoblasts or osteoclasts and treated with 17-β-estradiol. Bone metabolism was assessed by histological analysis, serum analyses and qRT-PCR. OVX successfully induced a high turnover in all mice, but a repair effect was observed in TNFα−/− and IL6−/− mice. The ratio of femoral trabecular bone volume to tissue volume, trabecular number and trabecular thickness were significantly decreased in WT mice subjected to OVX, but increased in TNFα−/− mice (1.62, 1.34, 0.27-fold respectively; P < 0.01) and IL6−/− mice (1.34, 0.80, 0.22-fold respectively; P < 0.01). Furthermore, we observed a 29.6% increase in the trabecular number in TNFα−/− mice when compared to the IL6−/− mice. Both, TNFα−/− and IL6−/− BMSCs exhibited decreased numbers of TRAP-positive cells and an increase in ALP-positive cells, with or without E2 treatment (P < 0.05). While the knockout of TNFα or IL6 significantly upregulated mRNA expressions of osteoblast-related genes (Runx2 and Col1a1) and downregulated osteoclast-related mRNA for TRAP, MMP9 and CTSK in vivo and in vitro, TNFα knockout appeared to have roles beyond IL6 knockout in upregulating Col1a1 mRNA expression and downregulating mRNA expressions of WNT-related genes (DKK1 and Sost) and TNF-related activation-induced genes (TRAF6). TNFα seemed to be more potentially invasive in inhibiting bone formation and enhancing TRAF6-mediated osteoclastogenesis than IL6, implying that the regulatory mechanisms of TNFα and IL6 in bone metabolism may be different.

Free access

Chunyu Wang, Li Tian, Kun Zhang, Yaxi Chen, Xiang Chen, Ying Xie, Qian Zhao and Xijie Yu

The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6−/−) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6−/− mice. The dysregulation of lipid metabolism was more serious in IL6−/− mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6−/− mice than those in WT mice on the HFD (P < 0.05). IL6−/− osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6−/− mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss.

Free access

Ankita Agrawal and Alison Gartland

The role of the P2X7 receptor (P2X7R) is being explored with intensive interest in the context of normal bone physiology, bone-related diseases and, to an extent, bone cancer. In this review, we cover the current understanding of P2X7R regulation of bone cell formation, function and survival. We will discuss how the P2X7R drives lineage commitment of undifferentiated bone cell progenitors, the vital role of P2X7R activation in bone mineralisation and its relatively unexplored role in osteocyte function. We also review how P2X7R activation is imperative for osteoclast formation and its role in bone resorption via orchestrating osteoclast apoptosis. Variations in the gene for the P2X7R (P2RX7) have implications for P2X7R-mediated processes and we review the relevance of these genetic variations in bone physiology. Finally, we highlight how targeting P2X7R may have therapeutic potential in bone disease and cancer.

Free access

Mara Riminucci, Pamela Gehron Robey, Isabella Saggio and Paolo Bianco

Activating mutations of the GNAS gene, which causes fibrous dysplasia of bone (FD), lead to remarkable changes in the properties of skeletal progenitors, and it is these changes that mediate the pathological effect of this gene on bone. Mutated skeletal stem cells lose the ability to differentiate into adipocytes, and to maintain in situ, and transfer heterotopically, the hematopoietic microenvironment, leading to abnormal bone marrow histology in FD. They overexpress molecular effectors of osteoclastogenesis, thus promoting inappropriate bone resorption leading to fragility of FD bone. They express the phosphate-regulating hormone FGF-23 at normal levels, whose excess in the serum of FD patients correlates with the mass of osteogenic cells within FD lesions, leading to osteomalacia and deformity of the FD bone, and revealing that bone is an endocrine organ regulating renal handling of phosphate. Mechanisms of allelic selection and stem cell selection occur in mutated skeletal stem cells and contribute to the inherent diversity and evolution over time in FD. The definition of the etiological role of GNAS mutations marks the watershed between many decades of descriptive observation and the definition of cellular and molecular mechanisms that would explain and hopefully allow for a cure for the disease. Placing stem cells at center stage has permitted substantial advances in one decade, and promises more for the one to come.

Free access

Gill Holdsworth, Scott J Roberts and Hua Zhu Ke

The discovery that two rare autosomal recessive high bone mass conditions were caused by the loss of sclerostin expression prompted studies into its role in bone homeostasis. In this article, we aim to bring together the wealth of information relating to sclerostin in bone though discussion of rare human disorders in which sclerostin is reduced or absent, sclerostin manipulation via genetic approaches and treatment with antibodies that neutralise sclerostin in animal models and in human. Together, these findings demonstrate the importance of sclerostin as a regulator of bone homeostasis and provide valuable insights into its biological mechanism of action. We summarise the current state of knowledge in the field, including the current understanding of the direct effects of sclerostin on the canonical WNT signalling pathway and the actions of sclerostin as an inhibitor of bone formation. We review the effects of sclerostin, and its inhibition, on bone at the cellular and tissue level and discuss new findings that suggest that sclerostin may also regulate adipose tissue. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of sclerostin.

Open access

Yasmine Hachemi, Anna E Rapp, Ann-Kristin Picke, Gilbert Weidinger, Anita Ignatius and Jan Tuckermann

Glucocorticoid hormones (GCs) have profound effects on bone metabolism. Via their nuclear hormone receptor – the GR – they act locally within bone cells and modulate their proliferation, differentiation, and cell death. Consequently, high glucocorticoid levels – as present during steroid therapy or stress – impair bone growth and integrity, leading to retarded growth and glucocorticoid-induced osteoporosis, respectively. Because of their profound impact on the immune system and bone cell differentiation, GCs also affect bone regeneration and fracture healing. The use of conditional-mutant mouse strains in recent research provided insights into the cell-type-specific actions of the GR. However, despite recent advances in system biology approaches addressing GR genomics in general, little is still known about the molecular mechanisms of GCs and GR in bone cells. Here, we review the most recent findings on the molecular mechanisms of the GR in general and the known cell-type-specific actions of the GR in mesenchymal cells and their derivatives as well as in osteoclasts during bone homeostasis, GC excess, bone regeneration and fracture healing.