Search Results

You are looking at 1 - 10 of 672 items for

  • Abstract: Estrogen x
  • Abstract: Estradiol x
  • Abstract: Ovar* x
  • Abstract: Testes x
  • Abstract: Sperm* x
  • Abstract: Oocyte x
  • Abstract: Leydig x
  • Abstract: Follicular x
  • Abstract: FSH x
  • Abstract: LH x
Clear All Modify Search
Restricted access

P.F. Whitelaw, C.D. Smyth, C.M. Howles and S.G. Hillier

ABSTRACT

Current understanding of the endocrine and paracrine regulation of follicular oestrogen synthesis predicts that aromatase cytochrome P450 (P450arom) mRNA is inducible by FSH in granulosa cells. LH receptor mRNA is constitutively expressed in thecal/interstital cells, and is also thought to be induced in granulosa cells in response to joint stimulation by FSH and oestrogen. This study provides direct evidence that FSH induces the ovarian P450arom gene selectively, perhaps exclusively, in the granulosa cells of Graafian follicles. FSH-induction of LH receptor mRNA occurs simultaneously but is independent of oestrogen synthesis per se.

Restricted access

A. J. Beard, D. Savva, R. G. Glencross, B. J. McLeod and P. G. Knight

ABSTRACT

To investigate the inhibin-induced suppression of FSH secretion by the anterior pituitary, chronically ovariectomized heifers (three per group) were treated for 56–58 h with either steroid-free bovine follicular fluid (bFF; 8 ml i.v. every 8 h) or 0·9% (w/v) NaCl (8 ml i.v. every 8 h). Blood was withdrawn at 8-h intervals for analysis of plasma concentrations of FSH and LH by radioimmunoassay. At the end of the treatment period, heifers were slaughtered and pituitary glands recovered for determination of gonadotrophin contents and levels of mRNA encoding FSH-β, LH-β, TSH-β and common α glycoprotein hormone subunits using [32P]cDNA probes in total RNA dot and Northern blot assays. Treatment with bFF markedly suppressed plasma FSH by 85% (P<0·001 compared with pretreatment period), but did not affect plasma LH concentrations. Plasma FSH and LH concentrations did not vary significantly in the saline-injected control heifers. The level of FSH-β subunit mRNA was reduced by 60% (P<0·001) in heifers treated with bFF, whereas no significant differences between control and bFF-treated heifers were observed in the levels of mRNA encoding LH-β, TSH-β or common α subunits. Treatments with bFF, however, did not affect pituitary content of either FSH or LH.

These results support the conclusion that inhibin exerts its selective suppressive effect on the secretion of FSH by the bovine pituitary, at least in part, by directly inhibiting expression of the gene encoding the FSH-β subunit.

Free access

MA Hattori, N Nishida, K Takesue, Y Kato and N Fujihara

The present study was designed to evaluate the regulation of nitric oxide (NO) synthesis in porcine oocytes during follicular development. Cumulus-oocyte complexes were obtained by aspirating the small follicles of immature porcine ovaries and cultured at 39 degrees C for 24-72 h with FSH in a serum-free medium. The oocyte-surrounding cumulus cells markedly proliferated and expressed LH receptor mRNA in response to FSH. The endothelial type of NO synthase (eNOS) (130 kDa) was detected in the oocyte, but not in the proliferated cumulus cells, by immunoblotting. The amount of oocyte eNOS did not significantly alter during culture, but measurement of nitrite and nitrate revealed FSH suppression of NO synthesis by approximately 50%. NO-releasing agents were added to the cultures to examine the effect of NO on the growth of cumulus cells. NO-releasing agents showed inhibitory effects on proliferation of the cumulus cells and expression of LH receptor mRNA. Thus, synthesis of eNOS-derived NO is suppressed in the porcine oocyte during development with no change in the enzyme amount, and it is suggested that it has an inhibitory function in the growth of cumulus cells.

Restricted access

T. A. Yarney and M. R. Sairam

ABSTRACT

Differences in binding and structural properties of ovine testicular FSH and LH receptors were investigated. The ovine FSH receptor did not discriminate between FSH of different species, although equine FSH was more reactive. In the same tissue, however, the LH receptor showed marked preference for ovine and bovine LH, reacting very weakly with other preparations of pituitary LH. Human chorionic gonadotrophin also reacted partly with the ovine LH receptor at 25 °C. However, at 4 °C. the optimum temperature for binding of the LH receptor to its homologous hormone, the receptor displayed no recognition for chorionic gonadotrophin preparations. Affinity cross-linking studies with ovine testicular membrane suggested that the ovine FSH receptor has an M r of 70 000, which is very similar to that observed in the porcine ovary. The M r of the ovine LH receptor was estimated to be 150 000, which is different from those of other mammalian species, including those that have been cloned. The data suggest that the binding and structural properties of the ovine FSH receptor are similar to those of other mammalian FSH receptors, whereas the ovine LH receptor appears to differ from other mammalian LH receptors in having a different M r and in being more stringent in its requirement for pituitary LH.

Free access

JT Dickey and P Swanson

The effect of steroid hormone treatment on coho salmon (Oncorhynchus kisutch) was examined. The cDNAs for coho salmon FSH beta and LH beta subunits were cloned and sequenced using reverse transcriptase PCR. Northern blot analysis revealed that a single transcript of 1 kb for each of these subunits was present in the pituitaries of vitellogenic and spermiating coho salmon. RNase protection assays (RPAs) were developed to quantify FSH beta and LH beta subunit transcript levels. For the RPAs, antisense RNA probes and sense RNA standards were prepared from a region of the cDNAs which spanned the signal peptide and a portion of the mature protein. These RPAs were used to examine the effects of exogenous steroids including testosterone, estradiol-17beta (E2) and 17alpha, 20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-P) in vivo, in coho salmon at three time points during the spring period of gonadal growth when plasma levels of FSH are increasing. Both testosterone and E2 increased steady state mRNA levels of LH beta, whereas E2 decreased steady state mRNA levels of FSH beta in one experiment. Thus, the RPAs were able to detect changes in steady state mRNA levels in response to exogenous steroid treatment. Plasma and pituitary levels of FSH and LH were also measured using RIA. Throughout the experimental series, FSH plasma levels decreased in response to exogenous testosterone and E2 administration, while 17alpha,20beta-P had no effect on FSH plasma levels. Plasma LH levels were not detected throughout the course of the experiment. Pituitary LH increased in response to testosterone and E2, while pituitary FSH levels did not change. 17alpha,20beta-P had no effect on pituitary FSH or LH content during the experiment. Thus, regulation of the gonadotropins in coho salmon occurs at both the transcriptional as well as the translational level. Testosterone and E2 appear to have negative feedback effects on FSH, but positive feedback on LH.

Restricted access

J. Brooks, W. J. Crow, J. R. McNeilly and A. S. McNeilly

ABSTRACT

The modulation of FSH secretion at the beginning and middle of the follicular phase of the cycle represents the key event in the growth and selection of the preovulatory follicle. However, the mechanisms that operate within the pituitary gland to control the increased release of FSH and its subsequent inhibition in vivo remain unclear. Treatment of ewes with bovine follicular fluid (bFF) during the luteal phase has been previously shown to suppress the plasma concentrations of FSH and, following cessation of treatment on day 11, a rebound release of FSH occurs on days 12 and 13. When luteal regression is induced on day 12, this hypersecretion of FSH results in an increase in follicle growth and ovulation rate. To investigate the mechanisms involved in the control of FSH secretion, ewes were treated with twice daily s.c. injections of 5 ml bFF on days 3–11 of the oestrous cycle and luteal regression was induced on day 12 with prostaglandin (PG). The treated ewes and their controls were then killed on day 11 (luteal), or 16 or 32h after PG and their pituitaries removed and halved. One half was analysed for gonadotrophin and gonadotrophin-releasing hormone (GnRH) receptor content. Total pituitary RNA was extracted from the other half and subjected to Northern analysis using probes for FSH-β, LH-β and common α subunit. Frequent blood samples were taken and assayed for gonadotrophins. FSH secretion was significantly (P<0.01) reduced during bFF treatment throughout the luteal phase and then significantly (P<0.01) increased after cessation of treatment, with maximum secretion being reached 18– 22h after PG, and then declining towards control values by 32h after PG. A similar pattern of LH secretion was seen after bFF treatment. Pituitary FSH content was significantly (P<0.05) reduced by bFF treatment at all stages of the cycle. No difference in the pituitary LH content was seen. The increase in GnRH receptor content after PG in the controls was delayed in the treated animals. Analysis of pituitary mRNA levels revealed that bFF treatment significantly (P<0.01) reduced FSH-β mRNA levels in the luteal phase. Increased levels of FSH-β, LH-β and α subunit mRNA were seen 16h after PG in the bFF-treated animals, at the time when FSH and LH secretion from the pituitary was near maximum. These results suggest that the rebound release of FSH after treatment with bFF (as a source of inhibin) is related to a rapid increase in FSH-β mRNA, supporting the concept that the rate of FSH release is directly related to the rate of synthesis.

Restricted access

D. A. Rodin, S. D. Abbot, G. Saade and R. N. Clayton

ABSTRACT

There are significant differences between rats and mice in the gonadal regulation of several aspects of gonadotroph function. To investigate whether these extend to the pretranslational regulation of FSH synthesis by gonadal steroids, we have measured FSH-β mRNA levels following gonadectomy and sex-steroid replacement and have related these to serum and pituitary FSH as a reflection of overall hormone synthesis.

In ovariectomized rats, FSH-β mRNA levels increased by 8 h, decreased, and then rose progressively over the next 28 days. A similar pattern of response was observed in orchidectomized rats. In mice, there were progressive increases in FSH-β mRNA levels in both males and females following gonadectomy, without evidence of the early peaks observed in rats. In both species, the change in FSH-β mRNA levels after gonadectomy was greater in females than in males. These changes in FSH-β mRNA following gonadectomy were paralleled by changes in the serum FSH concentration. In ovariectomized female rats and mice, pituitary FSH stores increased by 8 h and 3 days respectively, whereas in male rats, pituitary FSH content did not rise until 10 days after orchidectomy. The most striking species difference was the marked and prolonged reduction of pituitary FSH after orchidectomy of mice.

Treatment of rats and mice from the time of ovariectomy, with a dose of oestradiol that prevents increases in serum LH, only partially attenuated the rises in FSH-β mRNA and serum FSH and did not prevent the increase in pituitary FSH content. Treatment of intact or orchidectomized rats with testosterone suppressed FSH-β mRNA levels to 50% below intact control values without affecting pituitary FSH content. In mice, testosterone treatment for 10 days reduced the post-castration increase in FSH-β mRNA by only 26%, and prevented the fall in pituitary FSH content, although the increased serum concentration of FSH was unaffected.

In conclusion: (1) there is a good correlation between FSH-β mRNA levels and overall FSH biosynthesis in male and female rats and female mice, but this relationship is less obvious in male mice where pituitary FSH stores are not increased; (2) the inability of oestradiol to prevent completely the post-ovariectomy increase in FSH-β mRNA and FSH synthesis in female rats and mice indicates either that other gonadal products are necessary or that higher doses of oestradiol are required than for complete suppression of LH synthesis; (3) whilst the post-gonadectomy increases in FSH-β mRNA are larger in the female of both species, there are no major differences between rats and mice in the regulation of FSH-β gene expression by sex steroids.

Free access

Elisabeth Sambroni, Antoine D Rolland, Jean-Jacques Lareyre and Florence Le Gac

The general rules established from mammalian species for the regulation of spermatogenesis by gonadotropins may not be fully relevant in fish. Particularly, Fsh is as potent as Lh to stimulate steroidogenesis and the Fsh receptor is expressed in Leydig cells. In seasonal breeders, Fsh is likely the major gonadotropin involved in spermatogenesis onset and Lh is required to support spermatogenesis progression and gamete release. However, the genes that relay the action of Fsh and Lh have been poorly investigated in fish. The present study was aimed at identifying gonadotropin-dependent genes expressed in the testis during fish puberty. We cultured pubertal trout testicular explants for 96 h, with or without gonadotropin, and analyzed transcriptome variations using microarrays. Fsh and Lh had similar effects on a large group of genes while other genes were preferentially regulated by one or the other gonadotropin. We showed that most of the responsive genes were expressed in somatic cells and exhibited relevant patterns during the seasonal reproductive cycle. Some genes preferentially modulated by Lh could be involved in testicular cell fate (pvrl1 and bty) or sperm maturation (ehmt2 and racgap1) and will deserve further examination. Besides Fsh's effects on the steroidogenic pathway, our study demonstrates that Fsh coordinates relevant stimulatory and inhibitory paracrine factors known to regulate early germ cell proliferation and differentiation. Some of these genes belong to major regulatory pathways including the Igf pathway (igf1b/igf3 and igfbp6), the Tgfb pathway (amh, inha, inhba, and fstl3), the Wnt pathway (wisp1), and pleiotrophin (mdka).

Restricted access

E L Yong, S G Hillier, M Turner, D T Baird, S C Ng, A Bongso and S S Ratnam

ABSTRACT

The co-ordinated biosynthesis of progesterone and oestradiol in the human ovary is critical for reproductive cyclicity and eventual pregnancy. The crucial regulatory enzymes for progesterone and oestradiol biosynthesis in granulosa cells are the cholesterol side-chain cleavage (P450scc) and aromatase (P450arom) enzymes respectively. We utilized the cDNA sequences encoding P450arom and P450scc to examine the roles of FSH and LH, and their intracellular second messenger, cyclic AMP (cAMP), in regulating steroidogenic gene expression. Mature granulosa cells (aspirated before the onset of the endogenous LH surge) and granulosa lutein cells (obtained after an ovulatory dose of human chorionic gonadotrophin) were cultured for 4 days with FSH, LH or dibutyryl cAMP (dbcAMP). After the period of culture, total RNA was extracted from granulosa cells and Northern analyses were performed utilizing 32P-labelled cDNAs encoding P450arom and P450scc. Spent culture media were analysed for steroid and cAMP content.

Both FSH and LH strongly stimulated P450arom mRNA expression and oestradiol production in mature granulosa cells. On the other hand, P450scc mRNA expression and progesterone biosynthesis were weakly induced by FSH; maximal synthesis occurred only in the presence of LH. With both gonadotrophins at equivalent concentrations, LH generated a 30-fold higher level of cAMP than FSH. Furthermore, the differential effects of FSH and LH on P450 mRNA expression were reproduced by the presence of low and high concentrations of dbcAMP respectively. LH (and high levels of dbcAMP) increased P450arom mRNA expression in mature granulosa cells but inhibited its accumulation in granulosa lutein cells. In contrast, it stimulated P450scc mRNA expression and progesterone synthesis in both mature granulosa and granulosa lutein cells. Therefore, FSH/low cAMP levels stimulated P450arom gene expression and oestradiol production, while LH/high cAMP levels maximally induced P450scc gene expression and function, in a development-related manner consistent with steroid production in vivo. These findings support the hypothesis that one set of genes (like P450arom) in human granulosa cells is regulated by FSH/low cAMP levels and another (like P450scc) by LH/high cAMP levels.

Free access

M Hattori, K Takesue, N Nishida, Y Kato and N Fujihara

The present study investigated the effect of retinoic acid (RA) on the differentiation of granulosa cells prepared from porcine ovaries. The granulosa cells were precultured for 15 h, then cultured for 48 h with FSH and further treated for 24 h with LH in order to induce their transformation into luteal cells. After the cells had been exposed to 1 microM retinoids (RA, retinal and retinol) for 87 h, analysis of the LH receptor mRNA expression, an indicator of granulosa cell differentiation, was carried out by using semiquantitative RT-PCR. The results showed that there was a decrease in LH receptor mRNA levels, and that RA had a more potent effect on these levels than the other two retinoids. When cells were exposed to RA in the immature stage (before the addition of FSH) or the early stage of development (0-24 h after the addition of FSH), expression of LH receptor mRNA was greatly diminished. When the immature cells were cultured for 15 h with RA, then washed and cultured for 48 h with FSH and for 24 h with LH, the expression of LH receptor mRNA was not reversed. In the differentiated cells (24 h after the addition of FSH), however, RA no longer had any inhibitory effect. When the immature cells were exposed to RA, FSH-induced expression of c-fos mRNA was markedly decreased. In contrast, expression of c-jun and activating transcription factor-4 mRNAs remained constant. However, the expression of c-fos mRNA was not decreased by forskolin. The results indicate that RA is a potent inhibitor in the immature stage of porcine granulosa cell differentiation, probably through decreased expression of FSH receptor, but that RA does not inhibit differentiation in the mature stage of the cells.