Search Results

You are looking at 51 - 60 of 762 items for

  • Abstract: Leptin x
  • Abstract: Insulin x
  • Abstract: Ghrelin x
  • Abstract: Diabetes x
  • Abstract: Adipose x
  • Abstract: Inflammation x
  • Abstract: Thermogenesis x
  • Abstract: Lipolysis x
  • Abstract: Atherosclerosis x
  • Abstract: metabo* x
Clear All Modify Search
Free access

J Boucher, I Castan-Laurell, S Le Lay, D Grujic, D Sibrac, S Krief, M Lafontan, BB Lowell, I Dugail, JS Saulnier-Blache and P Valet

Catecholamines regulate white adipose tissue function and development by acting through beta- and alpha2-adrenergic receptors (ARs). Human adipocytes express mainly alpha 2A- but few or no beta 3-ARs while the reverse is true for rodent adipocytes. Our aim was to generate a mouse model with a human-like alpha2/beta-adrenergic balance in adipose tissue by creating transgenic mice harbouring the human alpha 2A-AR gene under the control of its own regulatory elements in a combined mouse beta 3-AR-/- and human beta 3-AR+/+ background. Transgenic mice exhibit functional human alpha 2A-ARs only in white fat cells. Interestingly, as in humans, subcutaneous adipocytes expressed higher levels of alpha2-AR than perigonadal fat cells, which are associated with a better antilipolytic response to epinephrine. High-fat-diet-induced obesity was observed in transgenic mice in the absence of fat cell size modifications. In addition, analysis of gene expression related to lipid metabolism in isolated adipocytes suggested reduced lipid mobilization and no changes in lipid storage capacity of transgenic mice fed a high-fat diet. Finally, the development of adipose tissue in these mice was not associated with significant modifications of glucose and insulin blood levels. Thus, these transgenic mice constitute an original model of diet-induced obesity for in vivo physiological and pharmacological studies with respect to the alpha2/beta-AR balance in adipose tissue.

Free access

NM Morton, V Emilsson, P de Groot, AL Pallett and MA Cawthorne

Leptin is a cytokine secreted from adipose tissue at a rate commensurate with the size of the body's fat stores. In addition to its anorectic and thermogenic central actions, leptin is known to act on peripheral tissues, including the pancreatic beta-cell where it inhibits insulin secretion and reduces insulin transcript levels. However, the role of leptin signalling through its full-length receptor, OB-Rb, in the beta-cell remains unclear. In the present study, we show that leptin activates a signal transducer and activator of transcription (STAT)3 signalling mechanism in pancreatic islets and in a rat model of the pancreatic beta-cell, RINm5F. Leptin induced DNA binding to a STAT consensus oligonucleotide and resulted in transcriptional activation from STAT reporter constructs in a manner consistent with STAT3 activation. Western blot analysis confirmed activation of STAT3 in RINm5F and isolated rat islets. Conditions that mimic increased metabolic activity resulted in attenuation of leptin-mediated STAT DNA binding but had no significant effect on STAT3 tyrosine phosphorylation in RINm5F cells. In addition, leptin activated the mitogen activated protein (MAP) kinase pathway in RINm5F cells. The present study provides a framework for OB-Rb signalling mechanisms in the programming of the beta-cell by leptin and suggests that increased metabolic activity may modulate this function.

Free access

Jonathan Pham, Kanaga Arul Nambi Rajan, Ping Li and Mana M Parast

Placental development is important for proper in utero growth and development of the fetus, as well as maternal well-being during pregnancy. Abnormal differentiation of placental epithelial cells, called trophoblast, is at the root of multiple pregnancy complications, including miscarriage, the maternal hypertensive disorder preeclampsia and intrauterine growth restriction. The ligand-activated nuclear receptor, PPARγ, and nutrient sensor, Sirtuin-1, both play a role in numerous pathways important to cell survival and differentiation, metabolism and inflammation. However, each has also been identified as a key player in trophoblast differentiation and placental development. This review details these studies, and also describes how various stressors, including hypoxia and inflammation, alter the expression or activity of PPARγ and Sirtuin-1, thereby contributing to placenta-based pregnancy complications.

Free access

Riccarda Granata, Marco Volante, Fabio Settanni, Carlotta Gauna, Corrado Ghé, Marta Annunziata, Barbara Deidda, Iacopo Gesmundo, Thierry Abribat, Aart-Jan van der Lely, Giampiero Muccioli, Ezio Ghigo and Mauro Papotti

The ghrelin gene products, namely acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (Ob), were shown to prevent pancreatic β-cell death and to improve β-cell function under treatment with cytokines, which are major cause of β-cell destruction in diabetes. Moreover, AG had been described previously to prevent streptozotocin (STZ)-induced diabetes in rats; however, the effect of either UAG or Ob has never been examined in this context. In the present study, we investigated the potential of UAG and Ob to increase islet β-cell mass and to reduce diabetes at adult age in STZ-treated neonatal rats. One-day-old rats were injected with STZ and subsequently administered with either AG, UAG or Ob for 7 days. On day 70, plasma glucose levels, plasma and pancreatic insulin levels, pancreatic islet area and number, insulin and pancreatic/duodenal homeobox-1 (Pdx1) gene expression, and antiapoptotic BCL2 protein expression were determined. Similarly to AG, both UAG and Ob counteracted STZ-induced high glucose levels and improved plasma and pancreatic insulin levels, which were reduced by the diabetogenic compound. UAG and Ob increased islet area, islet number, and β-cell mass with respect to STZ treatment alone. Finally, in STZ-treated animals, UAG and Ob up-regulated insulin and Pdx1 mRNA and increased the expression of BCL2 similarly to AG. Taken together, our results suggest that in STZ-treated newborn rats, UAG and Ob improve glucose metabolism and preserve islet cell mass, granting a therapeutic potential in medical conditions associated with impaired β-cell function.

Free access

Limin Tian, Luyan Zhang, Jing Liu, Tiankang Guo, Cuixia Gao and Jing Ni

Recent studies have reported that subclinical hypothyroidism (SCH) is associated with atherosclerosis (AS). Thyroid hormone is maintained at normal levels in patients with SCH, whereas TSH is increased. However, the pathogenesis of AS in association with SCH is only partially understood. In addition, endothelial dysfunction plays an important role in the development of AS. The purpose of the present research was to study the direct effect of TSH on human umbilical vein endothelial cells (HUVECs). The expression of some genes associated with endothelial dysfunction after treatment with TSH was evaluated by real-time PCR and western blotting respectively. At first, we showed that the TSH receptor (TSHR) is expressed in HUVECs. We also provide evidence indicating that TSH treatment promotes tumor necrosis factor α-induced endothelial cells interactions by upregulating the expression of the adhesion molecules intercellular adhesion molecule-1. Furthermore, the expression of endothelial nitric oxide synthase (eNOS) and prostacyclin (PGI2) was significantly attenuated following treatment with TSH in dose- and time-dependent manner. Conversely, the results indicated that TSH upregulated endothelin-1 (ET1) mRNA and protein expression in HUVECs, similar effects were observed for plasminogen activator inhibitor-1 (PAI1) after treatment with various concentrations of TSH. Taken together, these results demonstrate that elevated TSH can promote endothelial dysfunction by altering gene expression in HUVECs.

Free access

L J Moran, P A Mundra, H J Teede and P J Meikle

Polycystic ovary syndrome (PCOS) affects up to 18% of reproductive-aged women with reproductive and metabolic complications. While lipidomics can identify associations between lipid species and metabolic diseases, no research has examined the association of lipid species with the pathophysiological features of PCOS. The aim of this study was to examine the lipidomic profile in women with and without PCOS. This study was a cross-sectional study in 156 age-matched pre-menopausal women (18–45 years, BMI >20 kg/m2; n = 92 with PCOS, n = 64 without PCOS). Outcomes included the association between the plasma lipidomic profile (325 lipid species (24 classes) using liquid chromatography mass spectrometry) and PCOS, adiposity, homeostasis assessment of insulin resistance (HOMA), sex hormone-binding globulin (SHBG) and free androgen index (FAI). There were no associations of the lipidomic profile with PCOS or testosterone. HOMA was positively associated with 2 classes (dihydroceramide and triacylglycerol), SHBG was inversely associated with 2 classes (diacylglycerol and triacylglycerol), FAI was positively associated with 8 classes (ceramide, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylinositol, diacylglycerol and triacylglycerol) and waist circumference was associated with 8 classes (4 positively (dihydroceramide, phosphatidylglycerol, diacylglycerol and triacylglycerol) and 4 inversely (trihexosylceramide, GM3 ganglioside, alkenylphosphatidylcholine and alkylphosphatidylethanolamine)). The lipidomic profile was primarily related to central adiposity and FAI in women with or without PCOS. This supports prior findings that adiposity is a key driver of dyslipidaemia in PCOS and highlights the need for weight management through lifestyle interventions.

Free access

Jacqueline M Wallace, John S Milne, Raymond P Aitken and Clare L Adam

Intrauterine growth restriction (IUGR) is a risk factor for obesity, particularly when offspring are born into an unrestricted nutritional environment. In this study, we investigated the impact of IUGR and gender on circulating lipids and on expression of adipogenic, lipogenic and adipokine genes in perirenal adipose tissue. Singleton lambs born to overnourished adolescent dams were normal birth weight (N) or IUGR (32% lower birth weight due to placental insufficiency). IUGR lambs exhibited increased fractional growth rates but remained smaller than N lambs at necropsy (d77). At 48 days, fasting plasma triglycerides, non-esterified fatty acids and glycerol were elevated predominantly in IUGR males. Body fat content was independent of prenatal growth but higher in females than in males. In perirenal fat, relative to male lambs, females had larger adipocytes; higher lipoprotein lipase, fatty acid synthase and leptin and lower IGF1, IGF2, IGF1R, IGF2R and hormone-sensitive lipase mRNA expression levels, and all were independent of prenatal growth category; peroxisome proliferator-activated receptor gamma and glycerol-3-phosphate dehydrogenase (G3PDH) mRNA expression were not affected by IUGR or gender. Adiposity indices were inversely related to G3PDH mRNA expression, and for the population as a whole the expression of IGF system genes in perirenal fat was negatively correlated with plasma leptin, fat mass and adipocyte size, and positively correlated with circulating IGF1 levels. Higher plasma lipid levels in IUGR males may predict later adverse metabolic health and obesity, but in early postnatal life gender has the dominant influence on adipose tissue gene expression, reflecting the already established sexual dimorphism in body composition.

Free access

Rodolfo Gomez, Francisca Lago, Juan Gomez-Reino, Carlos Dieguez and Oreste Gualillo

The discovery of leptin in 1994 marked the beginning of a new understanding about white adipose tissue (WAT) and modified a static vision of this tissue which was viewed up to the end of the 20th century as an inert tissue, devoted to body protection from heat loss and to passively storing energy. The identification of the product of the gene obese accentuated the role of adipose tissue in the physiopathology of obesity-linked diseases, and led to the discovery of various adipokines, many of a pro-inflammatory nature. It has become progressively manifest that WAT-derived adipokines can now be considered as the fulcrum between obesity-related environmental causes, such as nutrition and lifestyle, and the biochemical shifts that lead to metabolic syndrome, inflammatory and/or autoimmune conditions, and rheumatic diseases. Herein, we review recent adipokine research, with particular emphasis to the role of leptin, adiponectin, resistin, and visfatin in chondrocyte function and skeleton, as well as in inflammatory and degenerative cartilage joint diseases.

Free access

Jessica A Deis, Hong Guo, Yingjie Wu, Chengyu Liu, David A Bernlohr and Xiaoli Chen

Lipocalin-2 (LCN2) has been previously characterized as an adipokine regulating thermogenic activation of brown adipose tissue and retinoic acid (RA)-induced thermogenesis in mice. The objective of this study was to explore the role and mechanism for LCN2 in the recruitment and retinoic acid-induced activation of brown-like or ‘beige’ adipocytes. We found LCN2 deficiency reduces key markers of thermogenesis including uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) in inguinal white adipose tissue (iWAT) and inguinal adipocytes derived from Lcn2 −/− mice. Lcn2 −/− inguinal adipocytes have attenuated insulin-induced upregulation of thermogenic gene expression and p38 mitogen-activated protein kinase (p38MAPK) signaling pathway activation. This is accompanied by a lower basal and maximal oxidative capacity in Lcn2 −/− inguinal adipocytes, indicating mitochondrial dysfunction. Recombinant Lcn2 was able to restore insulin-induced p38MAPK phosphorylation in both WT and Lcn2 −/− inguinal adipocytes. Rosiglitazone treatment during differentiation of Lcn2 −/− adipocytes is able to recruit beige adipocytes at a normal level, however, further activation of beige adipocytes by insulin and RA is impaired in the absence of LCN2. Further, the synergistic effect of insulin and RA on UCP1 and PGC-1α expression is markedly reduced in Lcn2 −/− inguinal adipocytes. Most intriguingly, LCN2 and the retinoic acid receptor-alpha (RAR-α) are concurrently translocated to the plasma membrane of adipocytes in response to insulin, and this insulin-induced RAR-α translocation is absent in adipocytes deficient in LCN2. Our data suggest a novel LCN2-mediated pathway by which RA and insulin synergistically regulates activation of beige adipocytes via a non-genomic pathway of RA action.

Free access

I J Bujalska, M Quinkler, J W Tomlinson, C T Montague, D M Smith and P M Stewart

Obesity is associated with increased morbidity and mortality from cardiovascular disease, diabetes and cancer. Although obesity is a multi-factorial heterogeneous condition, fat accumulation in visceral depots is most highly associated with these risks. Pathological glucocorticoid excess (i.e. in Cushing’s syndrome) is a recognised, reversible cause of visceral fat accumulation. The aim of this study was to identify depot-specific glucocorticoid-target genes in adipocyte precursor cells (preadipocytes) using Affymetrix microarray technique. Confluent preadipocytes from subcutaneous (SC) and omental (OM) adipose tissue collected from five female patients were treated for 24 h with 100 nM cortisol (F), RNA was pooled and hybridised to the Affymetrix U133 microarray set. We identified 72 upregulated and 30 downregulated genes by F in SC cells. In OM preadipocytes, 56 genes were increased and 19 were decreased. Among the most interesting were transcription factors, markers of adipocyte differentiation and glucose metabolism, cell adhesion and growth arrest protein factors involved in G-coupled and Wnt signalling. The Affymetrix data have been confirmed by quantitative real-time PCR for ten specific genes, including HSD11B1, GR, C/EBPα, C/EBPβ, IL-6, FABP4, APOD, IRS2, AGTR1 and GHR. One of the most upregulated genes in OM but not in SC cells was HSD11B1. The GR was similarly expressed and not regulated by glucocorticoids in SC and OM human preadipocytes. C/EBPα was expressed in SC preadipocytes and upregulated by F, but was below the detection level in OM cells. C/EBPβ was highly expressed both in SC and in OM preadipocytes, but was not regulated by F. Our results provide insight into the genes involved in the regulation of adipocyte differentiation by cortisol, highlighting the depot specifically in human adipose tissue.