Search Results

You are looking at 1 - 10 of 745 items for

  • Abstract: Estrogen x
  • Abstract: Corticosteroids x
  • Abstract: Mineralocorticoid x
  • Abstract: Aldosterone x
  • Abstract: Androgens x
  • Abstract: Testosterone x
  • Abstract: Gonadotropin x
  • Abstract: Cholesterol x
  • Abstract: Adrenal x
  • Abstract: Gonads x
  • Abstract: steroid* x
  • Abstract: glucocorticoids x
Clear All Modify Search
Full access

P. Netchitailo, A. Larcher, F. Leboulenger, M. Feuilloley, D. Philibert and H. Vaudry

ABSTRACT

To investigate a possible direct action of glucocorticoids on adrenal steroidogenesis, the effect of corticosterone on the conversion of pregnenolone into various metabolites by frog adrenal tissue was examined. Frog interrenal slices were incubated with [3H]pregnenolone (1 mCi/ml) and the various labelled metabolites analysed by reverse-phase high-performance liquid chromatography. With the methanol gradient used, five identified steroids were resolved: progesterone, 11-deoxycorticosterone, corticosterone, 18-hydroxycorticosterone and aldosterone. Corticosterone (10 μg/ml) induced a 45–80% decrease in all steroids synthesized from [3H]pregnenolone. In contrast, the glucocorticoid agonist dexamethasone did not reduce the rate of conversion of pregnenolone into its metabolites. In addition, the inhibitory effect of corticosterone was not reversed by the specific glucocorticoid antagonist RU 43044. These results show that corticosterone exerts a direct inhibitory effect on adrenal steroid secretion. In addition, our data indicate that the ultra-short regulation induced by corticosterone is not mediated through glucocorticoid receptors.

Full access

Eva A Rog-Zielinska, Rachel V Richardson, Martin A Denvir and Karen E Chapman

Glucocorticoids are steroid hormones, essential in mammals to prepare for life after birth. Blood levels of glucocorticoids (cortisol in most mammals including humans; corticosterone in rats and mice) rise dramatically shortly before birth. This is mimicked clinically in the routine administration of synthetic glucocorticoids to pregnant women threatened by a preterm birth or to preterm infants to improve neonatal survival. Whilst effects on lung are well documented and essential for postnatal survival, those on heart are less well known. In this study, we review recent evidence for a crucial role of glucocorticoids in late gestational heart maturation. Either insufficient or excessive glucocorticoid exposure before birth may alter the normal glucocorticoid-regulated trajectory of heart maturation with potential life-long consequences.

Open access

Emma J Agnew, Jessica R Ivy, Sarah J Stock and Karen E Chapman

Glucocorticoids are essential in mammals to mature fetal organs and tissues in order to survive after birth. Hence, antenatal glucocorticoid treatment (termed antenatal corticosteroid therapy) can be life-saving in preterm babies and is commonly used in women at risk of preterm birth. While the effects of glucocorticoids on lung maturation have been well described, the effects on the fetal heart remain less clear. Experiments in mice have shown that endogenous glucocorticoid action is required to mature the fetal heart. However, whether the potent synthetic glucocorticoids used in antenatal corticosteroid therapy have similar maturational effects on the fetal heart is less clear. Moreover, antenatal corticosteroid therapy may increase the risk of cardiovascular disease in adulthood. Here, we present a narrative review of the evidence relating to the effects of antenatal glucocorticoid action on the fetal heart and discuss the implications for antenatal corticosteroid therapy.

Full access

F Gizard, E Teissier, I Dufort, G Luc, V Luu-The, B Staels and DW Hum

Steroid hormones synthesized from cholesterol in the adrenal gland are important regulators of many physiological processes. It is now well documented that the expression of many genes required for steroid biosynthesis is dependent on the coordinated expression of the nuclear receptor steroidogenic factor-1 (SF-1). However, transcriptional mechanisms underlying the species-specific, developmentally programmed and hormone-dependent modulation of the adrenal steroid pathways remain to be elucidated. Recently, we demonstrated that the transcriptional regulating protein of 132 kDa (TReP-132) acts as a coactivator of SF-1 to regulate human P450scc gene transcription in human adrenal NCI-H295 cells. The present study shows that overexpression of TReP-132 increases the level of active steroids produced in NCI-H295 cells. The conversion of pregnenolone to downstream steroids following TReP-132 expression showed increased levels of glucocorticoids, C(19) steroids and estrogens. Correlating with these data, TReP-132 increases P450c17 activities via the induction of transcript levels and promoter activity of the P450c17 gene, an effect that is enhanced in the presence of cAMP or SF-1. In addition, P450aro activity and mRNA levels are highly induced by TReP-132, whereas 3beta-hydroxysteroid dehydrogenase type II and P450c11aldo transcript levels are only slightly modulated. Taken together, these results demonstrate that TReP-132 is a trans-acting factor of genes involved in adrenal glucocorticoid, C(19) steroid and estrogen production.

Full access

A Jamieson, J M C Connell and R Fraser

Glucocorticoid-suppressible hyperaldosteronism (GSH), first described in 1966 (Sutherland et al. 1966), is a rare cause of familial hypertension. It presents in young adults with hypertension, hypokalaemia and suppressed plasma renin activity (features caused by the excess activity of aldosterone secretion), and is distinguished from other forms of primary hyperaldosteronism by its autosomal dominant mode of inheritance and the reversal of all its clinical and biochemical abnormalities by the administration of small doses of the synthetic glucocorticoid dexamethasone (Connell et al. 1986). GSH is also characterized by abnormally elevated levels of 18-hydroxycortisol and 18-oxocortisol, the excretion of which also falls to normal following dexamethasone administration (Chu & Ulick, 1982; Ulick et al. 1983; Gomez-Sanchez et al. 1984). The study of the production of these unusual 18-hydroxylated steroids has led to a reappraisal of the late reactions in aldosterone and cortisol synthesis by the adrenal cortex,

Open access

Gillian A Gray, Christopher I White, Raphael F P Castellan, Sara J McSweeney and Karen E Chapman

Corticosteroids influence the development and function of the heart and its response to injury and pressure overload via actions on glucocorticoid (GR) and mineralocorticoid (MR) receptors. Systemic corticosteroid concentration depends largely on the activity of the hypothalamic–pituitary–adrenal (HPA) axis, but glucocorticoid can also be regenerated from intrinsically inert metabolites by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), selectively increasing glucocorticoid levels within cells and tissues. Extensive studies have revealed the roles for glucocorticoid regeneration by 11β-HSD1 in liver, adipose, brain and other tissues, but until recently, there has been little focus on the heart. This article reviews the evidence for glucocorticoid metabolism by 11β-HSD1 in the heart and for a role of 11β-HSD1 activity in determining the myocardial growth and physiological function. We also consider the potential of 11β-HSD1 as a therapeutic target to enhance repair after myocardial infarction and to prevent the development of cardiac remodelling and heart failure.

Full access

Yewei Xing, C Richard Parker, Michael Edwards and William E Rainey

The adrenal glands are the primary source of minerocorticoids, glucocorticoids, and the so-called adrenal androgens. Under physiological conditions, cortisol and adrenal androgen synthesis are controlled primarily by ACTH. Although it has been established that ACTH can stimulate steroidogenesis, the effects of ACTH on overall gene expression in human adrenal cells have not been established. In this study, we defined the effects of chronic ACTH treatment on global gene expression in primary cultures of both adult adrenal (AA) and fetal adrenal (FA) cells. Microarray analysis indicated that 48 h of ACTH treatment caused 30 AA genes and 84 FA genes to increase by greater than fourfold, with 20 genes common in both cell cultures. Among these genes were six encoding enzymes involved in steroid biosynthesis, the ACTH receptor and its accessory protein, melanocortin 2 receptor accessory protein (ACTH receptor accessory protein). Real-time quantitative PCR confirmed the eight most upregulated and one downregulated common genes between two cell types. These data provide a group of ACTH-regulated genes including many that have not been previously studied with regard to adrenal function. These genes represent candidates for regulation of adrenal differentiation and steroid hormone biosynthesis.

Full access

M Castrén, T Trapp, B Berninger, E Castrén and F Holsboer

ABSTRACT

We investigated the mechanisms by which corticosteroids regulate the expression of the mineralocorticoid receptor (MR) in neurones. Aldosterone and dexamethasone produced a dose-dependent increase of MR mRNA levels in cultured primary hippocampal neurones. Transient transfection of neuroblastoma cells showed that corticosteroids directly activate the rat MR promoter, indicating that the steroid-induced increase in the MR mRNA concentration is at least partially transcriptional. Progressive 5′ deletions of the MR promoter sequence revealed that the promoter induction cannot be assigned to a single element. An oligonucleotide comprising a consensus half-glucocorticoid responsive element located at – 319 bp in the MR promoter stimulated the corticosteroid-induced activation of the heterologous promoter. Cloning three of these enhancers in tandem greatly potentiated the responses to glucocorticoids and mineralocorticoids, suggesting that although this element is a weak enhancer it can, in combination with other enhancer elements, induce MR gene expression by both types of corticosteroid receptors.

Full access

Y Wan and SK Nordeen

Glucocorticoids and progestins are two classes of steroid hormone with very distinct biological functions. However, the glucocorticoid receptor (GR) and the progesterone receptor (PR) share many structural and functional similarities. One way that glucocorticoids and progestins can exert different biological effects is through their different abilities to regulate the expression of certain target genes. A strategy employing a retroviral promoter-trap and Cre/loxP-mediated site-specific recombination has been developed to identify genes that are differentially regulated by glucocorticoids and progestins. A mouse fibroblast cell line (4F) stably expressing both GR and PR and containing a single copy of a multifunctional selection plasmid is generated. This line is transduced with a self-inactivating retroviral promoter-trap vector carrying coding sequences for Cre-recombinase (Cre) in the U3 region. Integration of the provirus places Cre expression under the control of a genomic flanking sequence. Activation of Cre expression from integration into active genes results in a permanent switch between the selectable marker genes that converts the cells from neomycin-resistant to hygromycin-resistant. Selection for hygromycin resistance after hormone treatment yields recombinants in which Cre sequences in the U3 region are expressed from hormone-inducible upstream cellular promoters. Because Cre-mediated recombination is a permanent event, the expression of the selectable marker genes is independent of ongoing Cre expression. Thus this system permits the identification of genes that are transiently or weakly induced by hormone.

Full access

Amanda J Rickard and Morag J Young

The mineralocorticoid receptor (MR) and glucocorticoid receptor are ligand-activated transcription factors that have important physiological and pathophysiological actions in a broad range of cell types including monocytes and macrophages. While the glucocorticoids cortisol and corticosterone have well-described anti-inflammatory actions on both recruited and tissue resident macrophages, a role for the mineralocorticoid aldosterone in these cells is largely undefined. Emerging evidence, however, suggests that MR signalling may promote pro-inflammatory effects. This review will discuss the current understanding of the role of corticosteroid receptors in macrophages and their effect on diseases involving inflammation, with a particular focus on cardiovascular disease.