Search Results

You are looking at 41 - 50 of 717 items for

  • Abstract: Estrogen x
  • Abstract: Estradiol x
  • Abstract: Ovar* x
  • Abstract: Testes x
  • Abstract: Sperm* x
  • Abstract: Oocyte x
  • Abstract: Leydig x
  • Abstract: Follicular x
  • Abstract: FSH x
  • Abstract: LH x
  • Abstract: Mammary x
Clear All Modify Search
Free access

L Nicol, McNeilly JR, M Stridsberg and AS McNeilly

This study investigated the role of the secretory granule proteins, secretogranin II (SgII) and chromogranin A (CgA), in the differential secretion of FSH and LH from LbetaT2 mouse gonadotroph cells. Exogenous activin, which synergises with GnRH, is essential for the release of FSH from these cells, but also has stimulatory effects on LH and enhances GnRH-induced LH secretion. Two experiments are reported. In experiment 1, cultures were supplemented with activin (0-50 ng/ml), with and without a daily 1 h treatment of 10 nM GnRH, for 3 days. Protein secretion and mRNA levels were measured. In experiment 2, cells were treated with activin (50 ng/ml) alone, a daily 1 h treatment of 10 nM GnRH, or a combination of both for 6 days. In addition, cells exposed to activin+GnRH for 3 days were subsequently left untreated or given activin or GnRH alone for a further 3 days for comparison with cells maintained in activin+GnRH for 6 days. Protein secretion, intracellular protein and mRNA levels were measured. FSH secretion was stimulated, dose dependently, by activin and this effect increased synergistically in the presence of GnRH. The close correlation between secreted and intracellular FSH and FSHbeta mRNA levels was maintained in cells that had undergone treatment withdrawal after previous exposure to activin+GnRH, but there was no correlation between FSH and the granins. These results are consistent with the view that FSH released in response to activin/GnRH is constitutively secreted via a granin-independent pathway. SgII secretion mirrored the GnRH-induced secretion of LH, but was unaffected by activin, which stimulated LH secretion and had a detrimental effect on CgA mRNA transcription. This confirms previous observations that the LH released in response to GnRH is co-released with SgII via a regulated, granin-dependent pathway, and, in addition, suggests that activin may stimulate LH secretion through a constitutive, granin-independent pathway.

Restricted access

J. R. McNeilly, P. Brown, A. J. Clark and A. S. McNeilly

ABSTRACT

While the regulation of gonadotrophin secretion by gonadotrophin-releasing hormone (GnRH) has been well documented in both rats and sheep, its role in the synthesis of gonadotrophin subunits remains unclear. We have investigated the effects of the specific inhibition of GnRH by a GnRH agonist on the expression of gonadotrophin subunit genes and the subsequent storage and release of both intact hormones and free α subunit.

Treatment with GnRH agonist for 6 weeks abolished pulsatile LH secretion, reduced plasma concentrations of FSH and prevented GnRH-induced release of LH and FSH. This was associated with a reduction of pituitary LH-β mRNA and FSH-β mRNA levels (to 5 and 30% of luteal control values respectively), but not α mRNA which was significantly increased (75% above controls). While there was a small decrease in the pituitary content of FSH (30% of controls), there was a drastic reduction in LH pituitary content (3% of controls). In contrast to the observed rise in α mRNA, there was a decrease in free α subunit in both the pituitary and plasma (to 30 and 80% of control levels).

These results suggest that, while GnRH positively regulates the expression of both gonadotrophin β-subunit genes, it can, under certain circumstances, negatively regulate α-subunit gene expression. Despite the complete absence of LH and FSH in response to GnRH, there remained a basal level of β-subunit gene expression and only a modest reduction (50%) in the plasma levels of both FSH and LH, suggesting that there is a basal secretory pathway. The dramatic reduction in LH pituitary content indicates that GnRH is required for the operation of a regulatory/storage pathway for the secretion of LH. There appears to be no similar mechanism for FSH. The LH-specific pathway is probably dependent upon the availability of LH-β subunits which subsequently plays a role in regulating α subunit by sequestering, assembling and storing the intact hormone in the presence of GnRH. Finally, in the absence of responsiveness to GnRH, the regulation of α-subunit production is not at the level of gene transcription. Inefficient translation of the mRNA or rapid degradation of the free α chain may account for the observed dramatic decrease in production of α subunit.

Free access

W Porter, F Wang, R Duan, C Qin, E Castro-Rivera, K Kim and S Safe

Heat shock protein 27 (Hsp 27) is expressed in mammary tumors and may play a role in tumor growth and response to anti-neoplastic drug therapy. 17beta-Estradiol (E2) induces Hsp 27 mRNA levels in MCF-7 human breast cancer cells, and we have investigated the comparative inhibitory mechanisms using the aryl hydrocarbon receptor (AhR) agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the direct-acting antiestrogen ICI 164,384. TCDD inhibited E2-induced Hsp 27 gene expression and analysis of the Hsp 27 gene promoter showed that the inhibitory response was associated with AhR interactions with a pentanucleotide motif at -3 to +2 in the promoter that corresponded to the core sequence of a dioxin responsive element. In contrast, ICI 164,384 induced Hsp 27 gene expression and reporter gene activity in MCF-7 cells and this represents one of the few examples of the estrogen receptor-alpha (ERalpha) agonist activity of the 'pure' antiestrogen ICI 164,384.

Free access

J Mao, AJ Molenaar, TT Wheeler and HM Seyfert

Activity of acetyl-CoA carboxylase (ACC)-alpha is rate limiting for de novo synthesis of fatty acids. The encoding gene is expressed by three different promoters. We characterized promoter III (PIII) from cow, previously only known from sheep. Quantitation of transcripts by RNAse protection assays and real time PCR revealed that PIII is primarily expressed and strongly induced ( approximately 28-fold) in the lactating mammary gland. PIII transcripts are expressed in mammary epithelial cells (MEC) as shown by in situ hybridization. A 2999 bp segment of the PIII promoter conferred prolactin and dexamethasone inducibility to a luciferase reporter gene in stably transfected mouse MEC cells. Lactogenic induction was abolished if a unique signal transducer and activator of transcription (STAT)-binding site at position -797 was inactivated by two point mutations. An oligonucleotide probe harboring this STAT-site specifically bound nuclear proteins from the lactating mammary gland. Binding was abolished by those two point mutations and super-shift analyses showed that STAT5A factors are present in this complex. Hence, prolactin, acting through STAT5, contributes to the activation of ACC expression in the milk producing cells of the lactating mammary gland. We discuss that STAT5 might be important in determining the milk composition by coordinating fatty acid and protein synthesis during lactation.

Free access

MC Barber, L Pooley and MT Travers

Expression of a variant acetyl-CoA carboxylase-alpha (ACC-alpha) mRNA encoding an isozyme either comprising (+24nt) or lacking (Delta24nt) an eight amino acid domain proximal to the Ser-1200 phosphorylation motif has been investigated in ovine and rat mammary tissue throughout pregnancy and lactation. The ratio of the Delta24nt mRNA: +24nt mRNA in ovine tissues varied from 0.1-0.25 (spleen, lung, muscle, heart, adipose tissue, brain) to 0.6-0.8 (pancreas, liver, kidney) to approximately 5.0 (lactating mammary gland). The sixfold increase in total ACC-alpha mRNA expression in mammary gland during lactation was due entirely to a tenfold increase in the level of the Delta24nt species as the level of expression of the +24nt species remained unaltered between pregnancy and lactation. This mode of expression of the +24nt and Delta24nt mRNAs was similar in rat mammary gland. Between day 20 of pregnancy and day 4 of lactation the ratio of the Delta24nt : +24nt mRNA increased from 2:1 to 10-20:1. Forced involution reduced the ratio of the two mRNAs to levels observed throughout pregnancy. Treatment of lactating rats with bromocryptine reduced the ratio of the Delta24nt : +24nt mRNA to relative levels observed after forced involution, suggesting that the exonic splicing responsible for the generation of the two mRNA isoforms is prolactin responsive.

Restricted access

T. Ezashi, T. Hirai, T. Kato, K. Wakabayashi and Y. Kato

ABSTRACT

The gene for the β subunit of porcine LH (LH-β) was cloned from a genomic library constructed in EMBL3. The nucleotide sequence was determined for the entire gene transcriptional unit of porcine LH-β in addition to 1277 and 372 bp of the 5′- and 3′-flanking regions respectively. Southern blot analysis of the porcine genomic DNA indicated that the LH-β gene is present as a single copy. The transcriptional unit of porcine LH-β spanned 1107 bp and contained three exons interrupted by two introns of 326 and 289 bp. The short untranslated sequence in the first exon and the location of the exon/intron junctions at amino acid residues −16/−15 and +41/+42 were highly conserved in the rat, human and bovine LH-β genes. In the 5′-flanking region, one TATA box and two CCAAT boxes were present. The steroid-responsive element was not found up to 1277 bases upstream of the transcription start site. The potential AP-2 factor-responsive elements appeared nine times within the sequence that was determined, and four of them were located in the 5′-flanking region. Two distal AP-2 elements were arranged in an inverted repeat forming a 16 bp palindromic sequence. This feature suggested that hypothalamic gonadotrophin-releasing hormone stimulates expression of the LH-β gene, predominantly by a signal-transduction system with the protein kinase C cascade and a mediator, the AP-2 factor. A further characteristic feature of the porcine LH-β gene was the presence of clusters of GC boxes and CACCC elements in the 5′-flanking region and the downstream sequence. Co-existence of these regulatory elements with other elements, such as the AP-2 element or CCAAT box, was also found. The porcine LH-β gene shows a structure distinct from the porcine FSH-β and common α genes, which are counterparts of the LH-β gene, reflecting differential control of their synthesis during gametogenesis.

Restricted access

G. Verhoeven, J. Cailleau and I. D. Morris

ABSTRACT

Ethane 1,2-dimethane sulphonate (EDS) selectively destroys Leydig cells in the interstitium of the testis of adult rats. The toxic activity of this compound is much less obvious in the immature rat testis. We examined the effects of EDS, its monomethyl derivative and busulphan on cultured interstitial cells, percoll-purified Leydig cells, Sertoli cells and peritubular cells derived from immature rats. The studies with interstitial cells and Leydig cells showed that EDS (40–160 μg/ml) blocked the conversion of C21 and androgen precursors into testosterone and androstenedione. Higher concentrations of this compound also inhibited the production of C21 steroids and the LH-induced production of cyclic AMP (cAMP). The observed effects required a latent period of at least 8 h and were slowly reversible. Isolated cells were more sensitive to EDS than monolayer cultures. Reaggregation cultures were even less sensitive. EDS was markedly more effective on immature Leydig cells than its monomethyl derivative and busulphan. In cultured Sertoli cells FSH-inducible aromatase activity, cAMP production, androgen-binding protein (ABP) production and the secretion of a paracrine factor with Leydig cell-stimulatory activity were markedly reduced by busulphan. In these cells, busulphan was clearly more active than EDS and its monomethyl derivative. The production of paracrine factors which increase ABP production and decrease FSH-inducible aromatase activity in Sertoli cells was studied as a parameter of the effects of alkane sulphonates on peritubular cells. Only busulphan markedly decreased the production of these paracrine factors. It is concluded that EDS displays a selective toxicity to Leydig cells derived from immature animals and that, apart from its effects on germ cells, busulphan may also directly impair the function of Sertoli cells and peritubular cells.

Restricted access

F Richard, N Martinat, J-J Remy, R Salesse and Y Combarnous

ABSTRACT

Among all mammalian FSH receptors (FSH-R; including donkey (dk) FSH-R), only horse (hs) FSH-R does not bind hsLH/chorionic gonadotrophin (CG). In order to delineate the structural origin of hsFSH-R specificity precisely, we have cloned dkFSH-R cDNA from donkey testis mRNA by RT-PCR. Transiently expressed dkFSH-R endowed COS-7 cells with both hsLH/CG- and FSH-binding activity, as well as FSH-induced cAMP production.

The deduced dkFSH-R amino acid sequence shares 96% identity with the hsFSH-R: notably, in the hormone-binding domain, the specificity of hsFSH-R may be ascribed to only four divergent amino acids: Thr 173, Asp 202, Asn 268 and Pro 322. Interestingly, hsAsn 268 could bear an additional N-glycosylation. According to receptor negative specificity, these amino acids could be implicated in preventing LH/CG binding to FSH-R.

Restricted access

G. Saade, D. R. London, M. R. A. Lalloz and R. N. Clayton

ABSTRACT

The effect of castration and gonadal steroid replacement on the concentrations of LH-β and α subunit and prolactin mRNA was examined in mice.

Mouse LH-β, α and prolactin mRNAs were approximately 0·8, 0·7 and 1·1 kb in size respectively. After ovariectomy, LH-β mRNA levels increased 2- to 2·5-fold, while α mRNA levels increased 2·5-fold 6 and 10 days after ovariectomy. Serum LH rose after 2 days to reach six times control values at 10 days. Pituitary LH content doubled by 8 days after ovariectomy. Prolactin mRNA levels decreased to 50–60% of control at 3, 6, 8 and 10 days after ovariectomy and parallelled the fall in serum prolaction. Pituitary prolactin content fell more slowly, to 50% of intact control values by 10 days. The increase in both LH-β and α subunit mRNA, and decrease in prolactin mRNA, and serum and pituitary hormone changes, after ovariectomy were prevented by oestradiol or oestradiol plus progesterone replacement.

Levels of LH-β mRNA increased more quickly in male than in female mice, theearliest change being seen 24 h after orchidectomy. Maximum values (two- to threefold) were found on day 6 after orchidectomy. Concentrations of α mRNA increased by 12 h to between 2 and 2·5 times control from 3 to 10 days after orchidectomy. Serum LH doubled by 12 h and was three to five times greater than control values up to 10 days. Pituitary LH content fell by 48 h before gradually increasing to intact values after 10 days. Prolactin mRNA levels decreased progressively from 2 days after orchidectomy, and this decrease was preceded by a fall in serum and pituitary prolactin which remained low throughout the experiment. Testosterone treatment attenuated the rise in α mRNA, prevented the rise in LH-β mRNA and serum LH and partially restored the decrease in prolactin mRNA seen after orchidectomy.

We conclude that in mice, as in rats and ewes, both LH-β and α subunit mRNAs are negatively regulated by gonadal steroids, whereas prolactin mRNA is positively regulated, although there are temporal differences in patterns of mRNA responses between males and females. By comparison with female rats the rise in LH-β mRNA after ovariectomy was slower in mice. Moreover, the discordant changes in pituitary LH content and LH subunit mRNAs seen in mice after castration were not observed in rats. Furthermore, pituitary prolactin and prolactin mRNA do not fall after orchidectomy of rats. The modest (50%) increase of LH-β mRNA after castration of mice suggests that an increase in mRNA is not necessarily required for increased LH production.

Free access

M Gohin, P Bodinier, A Fostier, J Bobe and F Chesnel

In contrast to the classical model describing the synthesis of androgens and estrogens as restricted to somatic cells, a previous study demonstrated that Xenopus laevis oocytes participate in androgen synthesis. The objective of our study was to determine whether Xenopus oocytes are also involved in estrogen synthesis. More precisely, we analyzed aromatase expression by in situ hybridization and RT-QPCR and measured aromatase activity. Aromatase, the enzyme responsible for estrogen synthesis, appears to be expressed and active not only in the follicular cells but also in the vitellogenic oocytes. During late oogenesis, aromatase oocyte expression and activity decreased concomitantly with the trend observed in surrounding follicular layers. In order to investigate the role of estradiol-17β (E2), we studied its effect on oocyte meiotic resumption. It appears that, as in Rana pipiens, E2 inhibited the follicle-enclosed maturation of Xenopus oocytes, likely through inhibition of LH-induced maturation-inducing steroid synthesis. In addition, E2 exerted a slight enhancing action on denuded oocyte maturation whose biological significance remains unclear. Together, our results demonstrate that Xenopus oocyte significantly participates in ovarian E2 synthesis and this may be a common feature of vitellogenic vertebrates.