Search Results

You are looking at 31 - 40 of 1,100 items for

  • Abstract: Adipose x
  • Abstract: Obese x
  • Abstract: Fat x
  • Abstract: Metabo* x
  • Abstract: Energy x
  • Abstract: Diabetes x
  • Abstract: Leptin x
  • Abstract: Angiotensin x
  • Abstract: AT1 x
  • Abstract: Adipocyte x
  • Abstract: Adipogenesis x
Clear All Modify Search
Free access

Xu-guang Zhu, Dong Wook Kim, Michael L Goodson, Martin L Privalsky and Sheue-Yann Cheng

We previously showed that two thyroid hormone receptor (TR) isoforms – TRα1 and TRβ1 – differentially regulate thyroid hormone (triiodothyroxine, T3)-stimulated adipogenesis in vivo. This study aims to understand the role of the nuclear receptor corepressor, NCoR1, in TR isoform-dependent adipogenesis. We found that T3-stimulated adipogenesis of 3T3-L1 cells was accompanied by progressive loss of NCoR1 protein levels. In 3T3-L1 cells stably expressing a mutated TRα1, PV (L1-α1PV cells), the T3-stimulated adipogenesis was more strongly inhibited than that in 3T3-L1 cells stably expressing an identical mutation in TRβ1 (L1-β1PV cells). The stronger inhibition of adipogenesis in L1-α1PV cells was associated with a higher NCoR1 protein level. These results indicate that the degree of loss of NCoR1 correlates with the extent of adipogenesis. siRNA knockdown of NCoR1 promoted adipogenesis of control 3T3-L1 cells and reversed the inhibited adipogenesis of L1-α1PV and L1-β1PV cells, indicating that NCoR1 plays an essential role in TR isoform-dependent adipogenesis. An ubiquitin ligase, mSiah2, that targets NCoR1 for proteasome degradation was upregulated on day 1 before the onset of progressive loss of NCoR1. NCoR1 was found to associate with mSiah2 and with TR, TRα1PV, or TRβ1PV, but a stronger interaction of NCoR1 with TRα1PV than with TRβ1PV was detected. Furthermore, TRα1PV–NCoR1 complex was more avidly recruited than TRβ1PV–NCoR1 to the promoter of the C/ebp α gene, leading to more inhibition in its expression. These results indicate that differential interaction of NCoR1 with TR isoforms accounted for the TR isoform-dependent regulation of adipogenesis and that aberrant interaction of NCoR1 with TR could underlie the pathogenesis of lipid disorders in hypothyroidism.

Free access

C Bolduc, M Larose, M Yoshioka, P Ye, P Belleau, C Labrie, J Morissette, V Raymond, F Labrie and J St-Amand

Intra-abdominal fat accumulation is related to several diseases, especially diabetes and heart disease. Molecular mechanisms associated with this independent risk factor are not well established. Through the serial analysis of gene expression (SAGE) strategy, we have studied the transcriptomic effects of castration and dihydrotestosterone (DHT) in retroperitoneal adipose tissue of C57BL6 male mice. Approximately 50 000 SAGE tags were isolated in intact and gonadectomized mice, as well as 3 and 24 h after DHT administration. Transcripts involved in energy metabolism, such as glyceraldehyde-3-phosphate dehydrogenase, malic enzyme supernatant, fatty acid synthase, lipoprotein lipase, hormone-sensitive lipase and monoglyceride lipase, were upregulated by DHT. Transcripts involved in adipogenesis, and cell cycle and cell shape organization, such as DDX5, C/EBPα, cyclin I, procollagen types I, III, IV, V and VI, SPARC and matrix metalloproteinase 2, were upregulated by DHT. Cell defense, division and signaling, protein expression and many novel transcripts were regulated by castration and DHT. The present results provide global genomic evidence for a stimulation of glycolysis, fatty acids and triacylglycerol production, lipolysis and cell shape reorganization, as well as cell proliferation and differentiation, by DHT. The novel transcripts regulated by DHT may contribute to identify new mechanisms involved in the action of sex hormones and their potential role in obesity.

Restricted access

Ilaria Cimmino, Francesco Oriente, Vittoria D’Esposito, Domenico Liguoro, Pasquale Liguoro, Maria Rosaria Ambrosio, Serena Cabaro, Francesco D’Andrea, Francesco Beguinot, Pietro Formisano and Rossella Valentino

The dramatic rise in obesity and metabolic syndrome can be related, at least in part, to environmental chemical factors such as Bisphenol-A (BPA). In this study, we aimed to understand the effects of low-dose Bisphenol-A on the human mature adipocytes and stromal vascular fraction (SVF) cells, obtained from subcutaneous mammary adipose tissue of overweight female patients, undergoing surgical mammary reduction. 24 and/or 48-h exposure to BPA 0.1 nM elicited significant increase of the inflammatory molecules interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemo-attractant protein 1α (MCP1α) and induced G protein-coupled estrogen receptor 30 (GPR30) levels more than two-fold both in mature adipocytes and SVF cells. These effects were similar to that obtained in the presence of GPR30-specific agonist G1 (100 nM) and were reverted by G15 (1 µM), a GPR30-selective antagonist. As a result of BPA-GPR30 signaling activation, fatty acid synthase (FAS) and leptin mRNA levels were significantly higher upon BPA exposure (P < 0.05) in mature adipocytes, with an opposite effect on adiponectin (ADIPOQ). In addition, an increase in SVF cell proliferation and ERK1/2 phosphorylation, was observed, compared to untreated cells. G15 reverted all of these effects. Interestingly, the action of BPA on SVF cell growth was mimicked by IL-8 treatment and was reverted by incubation with anti-IL8 antibodies. All these data suggest that BPA at 0.1 nM, a ten times lower concentration than environmental exposure, increases the expression of pro-inflammatory cytokines via GPR30 both in mature mammary adipocytes and in SVF cells with a possible involvement of IL-8.

Free access

Jacqueline M Wallace, John S Milne, Raymond P Aitken and Clare L Adam

Intrauterine growth restriction (IUGR) is a risk factor for obesity, particularly when offspring are born into an unrestricted nutritional environment. In this study, we investigated the impact of IUGR and gender on circulating lipids and on expression of adipogenic, lipogenic and adipokine genes in perirenal adipose tissue. Singleton lambs born to overnourished adolescent dams were normal birth weight (N) or IUGR (32% lower birth weight due to placental insufficiency). IUGR lambs exhibited increased fractional growth rates but remained smaller than N lambs at necropsy (d77). At 48 days, fasting plasma triglycerides, non-esterified fatty acids and glycerol were elevated predominantly in IUGR males. Body fat content was independent of prenatal growth but higher in females than in males. In perirenal fat, relative to male lambs, females had larger adipocytes; higher lipoprotein lipase, fatty acid synthase and leptin and lower IGF1, IGF2, IGF1R, IGF2R and hormone-sensitive lipase mRNA expression levels, and all were independent of prenatal growth category; peroxisome proliferator-activated receptor gamma and glycerol-3-phosphate dehydrogenase (G3PDH) mRNA expression were not affected by IUGR or gender. Adiposity indices were inversely related to G3PDH mRNA expression, and for the population as a whole the expression of IGF system genes in perirenal fat was negatively correlated with plasma leptin, fat mass and adipocyte size, and positively correlated with circulating IGF1 levels. Higher plasma lipid levels in IUGR males may predict later adverse metabolic health and obesity, but in early postnatal life gender has the dominant influence on adipose tissue gene expression, reflecting the already established sexual dimorphism in body composition.

Free access

James E P Brown, David J Onyango, Manjunath Ramanjaneya, Alex C Conner, Snehal T Patel, Simon J Dunmore and Harpal S Randeva

The role of the adipocyte-derived factor visfatin in metabolism remains controversial, although some pancreatic β-cell-specific effects have been reported. This study investigated the effects of visfatin upon insulin secretion, insulin receptor activation and mRNA expression of key diabetes-related genes in clonal mouse pancreatic β-cells. β-TC6 cells were cultured in RPMI 1640 and were subsequently treated with recombinant visfatin. One-hour static insulin secretion was measured by ELISA. Phospho-specific ELISA and western blotting were used to detect insulin receptor activation. Real-time SYBR Green PCR array technology was used to measure the expression of 84 diabetes-related genes in both treatment and control cells. Incubation with visfatin caused significant changes in the mRNA expression of several key diabetes-related genes, including marked up-regulation of insulin (9-fold increase), hepatocyte nuclear factor (HNF)1β (32-fold increase), HNF4α (16-fold increase) and nuclear factor κB (40-fold increase). Significant down-regulation was seen in angiotensin-converting enzyme (−3.73-fold) and UCP2 (−1.3-fold). Visfatin also caused a significant 46% increase in insulin secretion compared to control (P<0.003) at low glucose, and this increase was blocked by co-incubation with the specific nicotinamide phosphoribosyltransferase inhibitor FK866. Both visfatin and nicotinamide mononucleotide induced activation of both insulin receptor and extracellular signal-regulated kinase (ERK)1/2, with visfatin-induced insulin receptor/ERK1/2 activation being inhibited by FK866. We conclude that visfatin can significantly regulate insulin secretion, insulin receptor phosphorylation and intracellular signalling and the expression of a number of β-cell function-associated genes in mouse β-cells.

Open access

Jun Zhou, Qilong Wang, Ye Ding and Ming-Hui Zou

We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH2-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes.

Free access

KJ Starkey, A Janezic, G Jones, N Jordan, G Baker and M Ludgate

The thyrotrophin receptor (TSHR) provides an autoantigenic link between the thyroid and orbit in Graves' (GD) and thyroid eye diseases (TED). We measured TSHR transcripts in different fat depots to determine whether TSHR expression levels are influenced by the autoimmune/inflammatory process and/or thyroid hormone status, using quantitative real-time PCR. Nine intact or fractionated adipose samples, from patients with GD and/or TED, were analysed ex vivo. Eight expressed the TSHR, at levels approaching the thyroid, and one was at the limit of detection. Thirteen/fifteen orbital and abdominal fat samples from patients free of GD and TED, measured ex vivo, were negative for TSHR transcripts and two were at the limit of detection. All preadipocyte samples induced to differentiate in vitro expressed the TSHR. To investigate the influence of thyroid hormone status on adipose TSHR expression, we induced hyper- and hypothyroidism in BALBc mice by administering tri-iodothyronine and propylthiouracil respectively. In euthyroid animals, whole fat samples were at the limit of detection and were not altered by thyroid hormone status. The results show that adipose TSHR expression ex vivo indicates adipogenesis in progress in vivo and is associated with the autoimmune/inflammatory process in GD and TED but is not restricted to the orbit or influenced by thyroid hormone status.

Free access

D T Furuya, A C Poletto, H S Freitas and U F Machado

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 μM arachidonyl-2′-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 μM AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-κB and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (∼2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-κB at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-κB and SREBP-1 transcriptional regulation.

Free access

Jacqueline M Wallace, John S Milne, Raymond P Aitken, Dale A Redmer, Lawrence P Reynolds, Justin S Luther, Graham W Horgan and Clare L Adam

Low birthweight is a risk factor for neonatal mortality and adverse metabolic health, both of which are associated with inadequate prenatal adipose tissue development. In the present study, we investigated the impact of maternal undernutrition on the expression of genes that regulate fetal perirenal adipose tissue (PAT) development and function at gestation days 89 and 130 (term=145 days). Singleton fetuses were taken from adolescent ewes that were either fed control (C) intake to maintain adiposity throughout pregnancy or were undernourished (UN) to maintain conception weight but deplete maternal reserves (n=7/group). Fetal weight was independent of maternal intake at day 89, but by day 130, fetuses from UN dams were 17% lighter and had lower PAT mass that contained fewer unilocular adipocytes. Relative PAT expression of IGF1, IGF2, IGF2R and peroxisome proliferator-activated receptor gamma (PPARG) mRNA was lower in UN than in controls, predominantly at day 89. Independent of maternal nutrition, PAT gene expression of PPARG, glycerol-3-phosphate dehydrogenase, hormone sensitive lipase, leptin, uncoupling protein 1 and prolactin receptor increased, whereas IGF1, IGF2, IGF1R and IGF2R decreased between days 89 and 130. Fatty acid synthase and lipoprotein lipase (LPL) mRNAs were not influenced by nutrition or stage of pregnancy. Females had greater LPL and leptin mRNA than males, and LPL, leptin and PPARG mRNAs were decreased in UN at day 89 in females only. PAT gene expression correlations with PAT mass were stronger at day 89 than they were at day 130. These data suggest that the key genes that regulate adipose tissue development and function are active beginning in mid-gestation, at which point they are sensitive to maternal undernutrition: this leads to reduced fetal adiposity by late pregnancy.

Open access

Cristina L Esteves, Val Kelly, Valérie Bégay, Simon G Lillico, Achim Leutz, Jonathan R Seckl and Karen E Chapman

Murine 3T3-L1 adipocytes are widely used as a cellular model of obesity. However, whereas transfection of 3T3-L1 preadipocytes is straightforward, ectopic gene expression in mature 3T3-L1 adipocytes has proved challenging. Here, we used the pSLIK vector system to generate stable doxycycline-inducible expression of the liver-enriched inhibitor protein isoform of CCAAT/enhancer binding protein β (CEPB (C/EBPβ-LIP)) in fully differentiated 3T3-L1 adipocytes. Because overexpression of C/EBPβ-LIP impairs adipocyte differentiation, the C/EBPβ-LIP construct was first integrated in 3T3-L1 preadipocytes but expression was induced only when adipocytes were fully differentiated. Increased C/EBPβ-LIP in mature adipocytes down-regulated C/EBPβ target genes including 11β-hydroxysteroid dehydrogenase type 1, phosphoenolpyruvate carboxykinase and fatty acid binding protein 4 but had no effect on asparagine synthetase, demonstrating that transcriptional down-regulation by C/EBPβ-LIP in 3T3-L1 adipocytes is not a general effect. Importantly, these genes were modulated in a similar manner in adipose tissue of mice with genetically increased C/EBPβ-LIP levels. The use of the pSLIK system to conditionally express transgenes in 3T3-L1 cells could be a valuable tool to dissect adipocyte physiology.