Search Results

You are looking at 21 - 30 of 1,098 items for

  • Abstract: Adipose x
  • Abstract: Obese x
  • Abstract: Fat x
  • Abstract: Metabo* x
  • Abstract: Energy x
  • Abstract: Diabetes x
  • Abstract: Leptin x
  • Abstract: Angiotensin x
  • Abstract: AT1 x
  • Abstract: Adipocyte x
  • Abstract: Adipogenesis x
Clear All Modify Search
Open access

Seema Kumar, Sarah Nadeem, Marius N Stan, Michael Coenen and Rebecca S Bahn

Graves' ophthalmopathy (GO) is characterized by expanded volume of the orbital tissues associated with elevated serum levels of TSH receptor (TSHR) autoantibodies. Because previous studies have demonstrated evidence of adipogenesis within the GO orbit, we sought to determine whether M22, a human monoclonal antibody directed against TSHR, enhances adipogenesis in orbital fibroblasts from patients with GO and, if so, to identify signaling mechanisms involved. GO orbital fibroblast cultures (n=10) were treated for 10 days with bovine TSH (1 or 10.0 U/l) or M22 (1 or 10 ng/ml) in serum-free adipocyte differentiation medium. Some cultures also received a phosphoinositide 3-kinase (PI3K) inhibitor or an inhibitor of cAMP production. In other experiments, confluent cultures (n=8) were treated for between 1 and 30 min with TSH (0.1–10.0 U/l) or M22 (0.1–100 ng/ml) with measurement of cAMP production or levels of phosphorylated AKT (pAKT). We found levels of adiponectin, leptin, and TSHR mRNA to be increased in GO cultures treated for 10 days with either M22 (2.6 mean fold ±0.7; P=0.03) or TSH (13.2±5.8-fold, P=0.048). In other studies, M22 and TSH stimulated cAMP production and pAKT levels in GO cells. Inhibition of PI3K activity during 10 days in culture decreased the levels of M22-stimulated mRNA encoding adiponectin (67±12%; P=0.021), as well as adiponectin and CCAAT/enhancer-binding protein α protein levels. In conclusion, M22 is a pro-adipogenic factor in GO orbital preadipocytes. This antibody appears to act via the PI3K signaling cascade, suggesting that inhibition of PI3K signaling may represent a potential novel therapeutic approach in GO.

Free access

R Serrano, M Villar, C Martínez, J M Carrascosa, N Gallardo and A Andrés

The insulin receptor (IR) occurs as two alternatively spliced isoforms, IR-A (exon 11−) and IR-B (exon 11+), which exhibit functional differences and are expressed in a tissue-specific manner. The IR substrate (IRS) proteins 1, 2 and 3 also differ in function and tissue distribution. Here we show the differential gene expression of IRs and IRSs in several rat target tissues of insulin action. IR-B is significantly higher than IR-A in epididymal white adipose tissue and adipogenesis induces a shift in the alternatively spliced species of IR from the A to the B isoform. Moreover, since aging in the rat is associated with the development of insulin resistance we looked for alterations of expression of these proteins in adipocytes from old rats. Our results reveal that there is a specific decrease in the expression of the IR-B isoform, as well as both mRNA and protein levels of IR, IRS-1 and IRS-3 being significantly decreased, in epididymal adipose tissue from old compared with adult rats. It is concluded that the down-regulation of early components of the insulin transduction pathway in a primary insulin target tissue could be related to the insulin resistance of aging.

Free access

Angela Nebbioso, Carmela Dell'Aversana, Anne Bugge, Roberta Sarno, Sergio Valente, Dante Rotili, Fabio Manzo, Diana Teti, Susanne Mandrup, Paolo Ciana, Adriana Maggi, Antonello Mai, Hinrich Gronemeyer and Lucia Altucci

Epigenetic deregulation contributes to diseases including cancer, neurodegeneration, osteodystrophy, cardiovascular defects, and obesity. For this reason, several inhibitors for histone deacetylases (HDACs) are being validated as novel anti-cancer drugs in clinical studies and display important anti-proliferative activities. While most inhibitors act on both class I, II, and IV HDACs, evidence is accumulating that class I is directly involved in regulation of cell growth and death, whereas class II members regulate differentiation processes, such as muscle and neuronal differentiation. Here, we show that the novel class II-selective inhibitor MC1568 interferes with the RAR- and peroxisome proliferator-activated receptor γ (PPARγ)-mediated differentiation-inducing signaling pathways. In F9 cells, this inhibitor specifically blocks endodermal differentiation despite not affecting retinoic acid-induced maturation of promyelocytic NB4 cells. In 3T3-L1 cells, MC1568 attenuates PPARγ-induced adipogenesis, while the class I-selective MS275 blocked adipogenesis completely thus revealing a different mode of action and/or target profile of the two classes of HDACs. Using in vivo reporting PPRE-Luc mice, we find that MC1568 impairs PPARγ signaling mostly in the heart and adipose tissues. These results illustrate how HDAC functions can be dissected by selective inhibitors.

Free access

RY Li, HD Song, WJ Shi, SM Hu, YS Yang, JF Tang, MD Chen and JL Chen

In addition to serving as a fat depot, adipose tissue is also considered as an important endocrine organ that synthesizes and secretes a number of factors. Leptin is an adipocyte-derived hormone that plays a vital role in energy balance. Expression of leptin is regulated by dietary status and hormones. In the present study, we report that galanin, an orexigenic peptide, inhibits leptin expression and secretion in rat adipose tissue and in 3T3-L1 adipocytes. Treatment with galanin (25 micro g/animal) induced approximately 46% down-regulation of leptin secretion at 15 min, followed by 40, 37 and 47% decreases in leptin secretion at 1, 2 and 4 h respectively. Although Northern blot analysis of adipose tissue from the same animals showed that leptin mRNA expression in adipose tissue was unaffected by galanin treatment for 2 h, galanin treatment for 4 h led to decline of leptin mRNA expression in a dose-dependent manner. Meanwhile, treating the rats with galanin had no effect on leptin mRNA expression in the hypothalamus. The inhibitory action of the galanin on leptin mRNA and protein levels was also observed in vitro. When incubated with 10 nM galanin for 48 h, leptin mRNA expression and protein secretion also decreased in 3T3-L1 adipocytes. On the other hand, galanin was found not only to express in rat adipose tissue, but also to increase about 8-fold after fasting. Based on these data, we speculate that increased galanin expression in rat adipose tissue after fasting may be involved in reducing leptin expression and secretion in fasting rats.

Free access

Jessica A Deis, Hong Guo, Yingjie Wu, Chengyu Liu, David A Bernlohr and Xiaoli Chen

Lipocalin-2 (LCN2) has been previously characterized as an adipokine regulating thermogenic activation of brown adipose tissue and retinoic acid (RA)-induced thermogenesis in mice. The objective of this study was to explore the role and mechanism for LCN2 in the recruitment and retinoic acid-induced activation of brown-like or ‘beige’ adipocytes. We found LCN2 deficiency reduces key markers of thermogenesis including uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) in inguinal white adipose tissue (iWAT) and inguinal adipocytes derived from Lcn2 −/− mice. Lcn2 −/− inguinal adipocytes have attenuated insulin-induced upregulation of thermogenic gene expression and p38 mitogen-activated protein kinase (p38MAPK) signaling pathway activation. This is accompanied by a lower basal and maximal oxidative capacity in Lcn2 −/− inguinal adipocytes, indicating mitochondrial dysfunction. Recombinant Lcn2 was able to restore insulin-induced p38MAPK phosphorylation in both WT and Lcn2 −/− inguinal adipocytes. Rosiglitazone treatment during differentiation of Lcn2 −/− adipocytes is able to recruit beige adipocytes at a normal level, however, further activation of beige adipocytes by insulin and RA is impaired in the absence of LCN2. Further, the synergistic effect of insulin and RA on UCP1 and PGC-1α expression is markedly reduced in Lcn2 −/− inguinal adipocytes. Most intriguingly, LCN2 and the retinoic acid receptor-alpha (RAR-α) are concurrently translocated to the plasma membrane of adipocytes in response to insulin, and this insulin-induced RAR-α translocation is absent in adipocytes deficient in LCN2. Our data suggest a novel LCN2-mediated pathway by which RA and insulin synergistically regulates activation of beige adipocytes via a non-genomic pathway of RA action.

Free access

Diana Vargas, Noriaki Shimokawa, Ryosuke Kaneko, Wendy Rosales, Adriana Parra, Ángela Castellanos, Noriyuki Koibuchi and Fernando Lizcano

Increasing thermogenesis in white adipose tissues can be used to treat individuals at high risk for obesity and cardiovascular disease. The objective of this study was to determine the function of EP300-interacting inhibitor of differentiation (EID1), an inhibitor of muscle differentiation, in the induction of beige adipocytes from adipose mesenchymal stem cells (ADMSCs). Subcutaneous adipose tissue was obtained from healthy women undergoing abdominoplasty. ADMSCs were isolated in vitro, grown, and transfected with EID1 or EID1 siRNA, and differentiation was induced after 48 h by administering rosiglitazone. The effects of EID1 expression under the control of the aP2 promoter (aP2-EID1) were also evaluated in mature adipocytes that were differentiated from ADMSCs. Transfection of EID1 into ADMSCs reduced triglyceride accumulation while increasing levels of thermogenic proteins, such as PGC1α, TFAM, and mitochondrial uncoupling protein 1 (UCP1), all of which are markers of energy expenditure and mitochondrial activity. Furthermore, increased expression of the beige phenotype markers CITED1 and CD137 was observed. Transfection of aP2-EID1 transfection induced the conversion of mature white adipocytes to beige adipocytes, as evidenced by increased expression of PGC1α, UCP1, TFAM, and CITED1. These results indicate that EID1 can modulate ADMSCs, inducing a brown/beige lineage. EID1 may also activate beiging in white adipocytes obtained from subcutaneous human adipose tissue.

Free access

B Zietz, W Drobnik, H Herfarth, C Buechler, J Scholmerich and A Schaffler

Plasminogen activator inhibitor-1 (PAI-1) levels were found to be associated with obesity indicating that adipocytes influence PAI-1 plasma levels. In addition, the 4 G/5 G promoter polymorphism of the PAI-1 gene may modulate PAI-1 transcription. We investigated the transcriptional regulation of the human PAI-1 gene in adipocytes and analyzed the genetic contribution of the 4 G/5 G polymorphism. The PAI-1 promoter was analyzed using electrophoretic mobility shift assays (EMSAs) and luciferase reporter gene assays. A putative binding site for the upstream stimulatory factor-1/2 (USF-1/2) at the polymorphic region of the PAI-1 promoter was identified. The binding of USF-1/2 was studied using nuclear extracts prepared from adipocytes and was similar in all the promoter variants as analyzed by EMSA. A 257 bp PAI-1 promoter fragment including the 4 G/5 G site was transcriptionally active in adipocytes and was not influenced by the polymorphism. The present data indicate for the first time that USF-1/2 is transcriptionally active in differentiated adipocytes. However, USF-1/2 binding activity and PAI-1 transcription are not influenced by the 4 G/5 G-allele. These data possibly explain the observation that PAI-1 secretion from adipose tissue is not influenced by the PAI-1 promoter polymorphism.

Free access

Umberto Bernabucci, Loredana Basiricò, Patrizia Morera, Nicola Lacetera, Bruno Ronchi and Alessandro Nardone

Studies have demonstrated that heat shock is associated with alteration in energy metabolism. In this study, we investigated the effect of heat shock on gene expression and secretion of adiponectin and leptin, and gene expression of Hspa2 and Pparγ in 3T3-L1 adipocytes. Compared with 37 °C, adiponectin mRNA was higher at 39 °C, and lower at 41 °C. Leptin mRNA was higher when adipocytes were exposed to 41 °C compared with 37 and 39 °C. Secretion of adiponectin increased at 39 °C, and when cells were exposed to 41 °C it was not detectable. Leptin secretion increased significantly at 41 °C, compared with 37  and 39 °C. Hspa2 mRNA was increased at 39 °C, and the highest level was reached at 41 °C. Pparγ mRNA exhibited a substantial increase in a temperature-dependent manner. The study provides the first evidence of a possible direct effect of heat shock on adiponectin and leptin gene expression and secretion, and demonstrates that the expression of the two adipokines is differentially regulated at the temperatures tested.

Free access

Ting Qi, Yanming Chen, Honggui Li, Ya Pei, Shih-Lung Woo, Xin Guo, Jiajia Zhao, Xiaoxian Qian, Joseph Awika, Yuqing Huo and Chaodong Wu

Metformin improves obesity-associated metabolic dysregulation, but has controversial effects on adipose tissue inflammation. The objective of the study is to examine the direct effect of metformin on adipocyte inflammatory responses and elucidate the underlying mechanisms. Adipocytes were differentiated from 3T3-L1 cells and treated with metformin at various doses and for different time periods. The treated cells were examined for the proinflammatory responses, as well as the phosphorylation states of AMPK and the expression of PFKFB3/iPFK2. In addition, PFKFB3/iPFK2-knockdown adipocytes were treated with metformin and examined for changes in the proinflammatory responses. The following results were obtained from the study. Treatment of adipocytes with metformin decreased the effects of lipopolysaccharide on inducing the phosphorylation states of JNK p46 and on increasing the mRNA levels of IL-1β and TNFα. In addition, treatment with metformin increased the expression of PFKFB3/iPFK2, but failed to significantly alter the phosphorylation states of AMPK. In PFKFB3/iPFK2-knockdown adipocytes, treatment with metformin did not suppress the proinflammatory responses as did it in control adipocytes. In conclusion, metformin has a direct effect on suppressing adipocyte proinflammatory responses in an AMPK-independent manner. Also, metformin increases adipocyte expression of PFKFB3/iPFK2, which is involved in the anti-inflammatory effect of metformin.

Free access

Tingting Zhang, Jinhan He, Chong Xu, Luxia Zu, Hongfeng Jiang, Shenshen Pu, Xiaohui Guo and Guoheng Xu

The mobilization of free fatty acids (FFA) from adipose tissue to the bloodstream primarily depends on triacylglycerol lipolysis in adipocytes. Catecholamines are major hormones that govern lipolysis through elevating cellular cAMP production and activating protein kinase, cAMP dependent, catalytic, alpha (PKA) and mitogen-activated protein kinase 1/2 (MAPK1/3). Obesity and type 2 diabetes are associated with elevated levels of systemic FFA, which restricts glucose utilization and induces insulin resistance. The biguanide metformin exerts its antihyperglycemic effect by enhancing insulin sensitivity, which is associated with decreased levels of circulating FFA. In this study, we examined the characteristics and basis of the inhibitory effect of metformin on adrenergic-stimulated lipolysis in primary rat adipocytes. We measured the release of FFA and glycerol as an index of lipolysis and examined the major signalings of the lipolytic cascade in primary rat adipocytes. Metformin at 250–500 μM efficiently attenuated FFA and glycerol release from the adipocytes stimulated with 1 μM isoproterenol. To elucidate the basis for this antilipolytic action, we showed that metformin decreased cellular cAMP production, reduced the activities of PKA and MAPK1/3, and attenuated the phosphorylation of perilipin during isoproterenol-stimulated lipolysis. Further, metformin suppressed isoproterenol-promoted lipase activity but did not affect the translocation of lipase, hormone-sensitive from the cytosol to lipid droplets in adipocytes. This study provides evidence that metformin acts on adipocytes to suppress the lipolysis response to catecholamine. This antilipolytic effect could be a cellular basis for metformin decreasing plasma FFA levels and improving insulin sensitivity.