Search Results

You are looking at 11 - 20 of 427 items for

  • Abstract: Atherosclerosis x
  • Abstract: Heart x
  • Abstract: Liver x
  • Abstract: Hypertensive x
  • Abstract: Vasculature x
  • Abstract: Angiotensin x
  • Abstract: Inflammation x
  • Abstract: Mineralocorticoid x
  • Abstract: Cardiac* x
  • Abstract: myocardial x
  • Abstract: Cardio* x
Clear All Modify Search
Free access

T Walther, S Heringer-Walther, R Tschope, A Reinecke, HP Schultheiss and C Tschope

C-type natriuretic peptide (CNP), a recent addition to the family of natriuretic peptides including atrial and brain natriuretic peptide (ANP, BNP), is believed to be an endothelium-derived vasodilator and to have an antimitotic effect. ANP and BNP concentrations are increased in conditions such as congestive heart failure, but cardiac CNP concentrations have not been investigated in this connection. Diabetes mellitus also involves myocardial dysfunctions without coronary artery disease or systemic hypertension. We therefore investigated the cardiac expression of CNP mRNA compared with that of BNP mRNA in streptozotocin (STZ)-diabetic rats. STZ- diabetic male Wistar rats (n=6) were studied in comparison with controls (n=6). The animals were characterised by their mean arterial blood pressure and plasma glucose concentrations. After extraction of total cardiac RNA, a specific cDNA probe of BNP was used for northern blot analysis, whereas myocardial CNP expression was analysed by an RNase-protection assay. Twelve weeks after diabetes was induced, the rats were normotensive (96.4+/-2.0 compared with 95.1+/-1.9 mmHg) and hyperglycaemic (615+/-61 compared with 165+/-21 mg/dl; P<0.001). Left ventricular pressure was significantly impaired (76.8+/-6.4 compared with 51.2+/-3.6 mmHg). STZ-diabetic rats had a 3.2-fold increase in cardiac BNP expression compared with controls. In contrast, cardiac CNP mRNA concentrations were decreased 2.6-fold. CNP seems to be downregulated like other peptides with antimitotic and vasodilator activities (nitric oxide, prostacyclin, kinins). This may contribute to cardiac dysfunction in diabetes mellitus and suggests that stimulation of CNP expression could provide cardiac protection in such cases.

Free access

A S R Araujo, P Schenkel, A T Enzveiler, T R G Fernandes, W A Partata, S Llesuy, M F M Ribeiro, N Khaper, P K Singal and A Belló-Klein

This study was conducted to test whether oxidative stress activates the intracellular protein kinase B (AKT1) signaling pathway, which culminates with cardiac hypertrophy in experimental hyperthyroidism. Male Wistar rats were divided into four groups: control, vitamin E, thyroxine (T4), and T4+vitamin E. Hyperthyroidism was induced by T4 administration (12 mg/l in drinking water for 28 days). Vitamin E treatment was given during the same period via s.c. injections (20 mg/kg per day). Morphometric and hemodynamic parameters were evaluated at the end of the 4-week treatment period. Protein oxidation, redox state (reduced glutathione, GSH/glutathione dissulfide, GSSG), vitamin C, total radical-trapping antioxidant potential (TRAP), hydrogen peroxide (H2O2), and nitric oxide metabolites (NOX) were measured in heart homogenates. The p-AKT1/AKT1 ratio, p-glycogen-synthase kinase (GSK)3B/GSK3B ratio, FOS, and JUN myocardial protein expression were also quantified by western blot after 4 weeks. Increases in biochemical parameters, such as protein oxidation (41%), H2O2 (62%), and NOX (218%), and increase in the left ventricular end-diastolic pressure were observed in the T4 group. T4 treatment also caused a decrease in GSH/GSSG ratio (83%), vitamin C (34%), and TRAP (55%). These alterations were attenuated by vitamin E administration to the hyperthyroid rats. Expression of p-AKT1/AKT1, p-GSK3B/GSK3B, FOS, and JUN were elevated in the T4 group (by 69, 37, 130, and 33% respectively), whereas vitamin E administration promoted a significant reduction in their expression. These results indicate that oxidative stress plays an important role in cardiac hypertrophy, and suggest redox activation of AKT1 and JUN/FOS signaling pathways with H2O2 acting as a possible intracellular mediator in this adaptive response to experimental hyperthyroidism.

Free access

Rebecca H Ritchie, Eser J Zerenturk, Darnel Prakoso and Anna C Calkin

Diabetic cardiomyopathy was first defined over four decades ago. It was observed in small post-mortem studies of diabetic patients who suffered from concomitant heart failure despite the absence of hypertension, coronary disease or other likely causal factors, as well as in large population studies such as the Framingham Heart Study. Subsequent studies continue to demonstrate an increased incidence of heart failure in the setting of diabetes independent of established risk factors, suggesting direct effects of diabetes on the myocardium. Impairments in glucose metabolism and handling receive the majority of the blame. The role of concomitant impairments in lipid handling, particularly at the level of the myocardium, has however received much less attention. Cardiac lipid accumulation commonly occurs in the setting of type 2 diabetes and has been suggested to play a direct causal role in the development of cardiomyopathy and heart failure in a process termed as cardiac lipotoxicity. Excess lipids promote numerous pathological processes linked to the development of cardiomyopathy, including mitochondrial dysfunction and inflammation. Although somewhat underappreciated, cardiac lipotoxicity also occurs in the setting of type 1 diabetes. This phenomenon is, however, largely understudied in comparison to hyperglycaemia, which has been widely studied in this context. The current review addresses the changes in lipid metabolism occurring in the type 1 diabetic heart and how they are implicated in disease progression. Furthermore, the pathological pathways linked to cardiac lipotoxicity are discussed. Finally, we consider novel approaches for modulating lipid metabolism as a cardioprotective mechanism against cardiomyopathy and heart failure.

Free access

Keiichi Ikeda, Katsuyoshi Tojo, Yuri Inada, Yuko Takada, Masaya Sakamoto, May Lam, William C Claycomb and Naoko Tajima

Despite our knowledge on the regulation of urocortin (Ucn) I and its related peptides in the heart, the possible involvement of cardiovascular stress substances, such as cytokines or angiotensin II (Ang II), on this regulation remains to be fully elucidated. We therefore evaluated the potential role of cardiovascular stress substances on the regulation of the Ucn–corticotropin-releasing hormone (CRH) receptor system in HL-1 cardiomyocytes using a Ucn I-specific RIA, conventional reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR. Ucn I mRNA levels were shown to be up-regulated by lipopolysaccarides (LPS), tumor necrosis factor-α (TNF-α), Ang II, H2O2, and pyrrolidinedithiocarbamate (PDTC). The LPS- and Ang II-induced increase in Ucn I mRNA levels was abolished by tempol. In addition, the secretion of Ucn I from HL-1 cardiomyocytes was stimulated by LPS and TNF-α. On the contrary, Ucn II mRNA was increased by TNF-α alone and Ang II with tempol, and the TNF-α-induced increase in Ucn II mRNA was abolished by erythromycin and PDTC. These results suggested that Ucn I mRNA may be up-regulated by oxidative stress, whereas Ucn II mRNA may be up-regulated by the activated nuclear factor-κB, i.e. inflammatory stress. CRH-R2 mRNA may be negatively regulated by the increase in expression of Ucn I and/or Ucn II mRNA. In conclusion, the Ucn–CRH receptor system may be regulated by two major forms of cardiac stresses, i.e. oxidative and inflammatory stress, and may play a critical role in cardiac stress adaptation in heart diseases.

Free access

Aurelie Nguyen Dinh Cat, Malou Friederich-Persson, Anna White and Rhian M Touyz

Understanding the mechanisms linking obesity with hypertension is important in the current obesity epidemic as it may improve therapeutic interventions. Plasma aldosterone levels are positively correlated with body mass index and weight loss in obese patients is reported to be accompanied by decreased aldosterone levels. This suggests a relationship between adipose tissue and the production/secretion of aldosterone. Aldosterone is synthesized principally by the adrenal glands, but its production may be regulated by many factors, including factors secreted by adipocytes. In addition, studies have reported local synthesis of aldosterone in extra-adrenal tissues, including adipose tissue. Experimental studies have highlighted a role for adipocyte-secreted aldosterone in the pathogenesis of obesity-related cardiovascular complications via the mineralocorticoid receptor. This review focuses on how aldosterone secretion may be influenced by adipose tissue and the importance of these mechanisms in the context of obesity-related hypertension.

Free access

Gabriela Placoná Diniz, Ana Paula Cremasco Takano, Erika Bruneto, Francemilson Goulart da Silva, Maria Tereza Nunes and Maria Luiza Morais Barreto-Chaves

The angiotensin II type 1 receptor (AT1R) is involved in the development of cardiac hypertrophy promoted by thyroid hormone. Recently, we demonstrated that triiodothyronine (T3) rapidly increases AT1R mRNA and protein levels in cardiomyocyte cultures. However, the molecular mechanisms responsible for these rapid events are not yet known. In this study, we investigated the T3 effect on AT1R mRNA polyadenylation in cultured cardiomyocytes as well as on the expression of microRNA-350 (miR-350), which targets AT1R mRNA. The transcriptional and translational actions mediated by T3 on AT1R levels were also assessed. The total content of ubiquitinated proteins in cardiomyocytes treated with T3 was investigated. Our data confirmed that T3 rapidly raised AT1R mRNA and protein levels, as assessed by real-time PCR and western blotting respectively. The use of inhibitors of mRNA and protein synthesis prevented the rapid increase in AT1R protein levels mediated by T3. In addition, T3 rapidly increased the poly-A tail length of the AT1R mRNA, as determined by rapid amplification of cDNA ends poly-A test, and decreased the content of ubiquitinated proteins in cardiomyocytes. On the other hand, T3 treatment increased miR-350 expression. In parallel with its transcriptional and translational effects on the AT1R, T3 exerted a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as on translational efficiency, resulting to the rapid increase in AT1R mRNA expression and protein levels. Finally, these results show, for the first time, that T3 rapidly triggers distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocytes.

Free access

Thalijn Liliana Catharina Wolters, Mihai Gheorghe Netea, Adrianus Rudolfus Marinus Maria Hermus, Johannes Willem Adriaan Smit and Romana Teodora Netea-Maier

Acromegaly is characterized by growth hormone (GH) and insulin-like growth factor 1 (IGF1) excess and is accompanied by an increased cardiovascular diseases (CVD) risk. As innate immune responses are crucial in CVD development, and IGF1 is linked to subclinical inflammation, we hypothesized that GH/IGF1 excess contributes to CVD development by potentiating systemic inflammation. We aimed to assess the effects of GH/IGF1 on inflammatory cytokine production. Whole blood from acromegaly patients and healthy volunteers and peripheral blood mononuclear cells (PBMCs) from healthy volunteers were stimulated with Toll-like receptor (TLR) ligands, with or without adding GH or IGF1 (in PBMC). Cytokine concentrations were measured by ELISA. The underlying signalling pathways were investigated by the inhibition of downstream targets of the IGF1 receptor. The following results were obtained. GH or IGF1 alone did not influence cytokine production in PBMCs. GH did not affect TLR-induced cytokine production, but co-stimulation with IGF1 dose dependently increased the TLR ligand-induced production of IL6 (P < 0.01), TNF alpha (P = 0.02) and IFNg (P < 0.01), as well as the production of the anti-inflammatory cytokine IL10 (P = 0.01). IGF1 had no effect on IL1B, IL17 and IL22 production. Inhibition of the MAPK pathway, but not mTOR, completely abrogated the synergistic effect of IGF1 on the LPS-induced IL6 and TNF alpha production. In whole blood of acromegaly patients, ex vivo IL6 production was increased (P < 0.01). In conclusion, IGF1, but not GH, has pro-inflammatory effects, probably via the MAPK signalling pathway and might be involved in the pathogenesis of atherosclerosis in acromegaly. The increased IL10 production possibly counteracts the pro-inflammatory effects.

Free access

He Jiang, Xiao-Ping Ye, Zhong-Yin Yang, Ming Zhan, Hai-Ning Wang, Huang-Min Cao, Hui-Jun Xie, Chun-Ming Pan, Huai-Dong Song and Shuang-Xia Zhao

There is a high incidence of metabolic syndrome among patients with primary aldosteronism (PA), which has recently been associated with an unfavorable cardiometabolic profile. However, the underlying mechanisms have not been clarified in detail. Characterizing aldosterone (Ald) target genes in adipocytes will help us to elucidate the deleterious effects associated with excess Ald. Apelin, a novel adipokine, exerts beneficial effects on obesity-associated disorders and cardiovascular homeostasis. The objective of this study was to investigate the effects of high Ald levels on apelin expression and secretion and the underlying mechanisms involved in adipocytes. In vivo, a single-dose Ald injection acutely decreased apelin serum levels and adipose tissue apelin production, which demonstrates a clear inverse relationship between the levels of plasma Ald and plasma apelin. Experiments using 3T3-L1 adipocytes showed that Ald decreased apelin expression and secretion in a time- and dose-dependent manner. This effect was reversed by glucocorticoid receptor (GR) antagonists or GR (NR3C1) knockdown; furthermore, putative HREs were identified in the apelin promoter. Subsequently, we verified that both glucocorticoids and mineralocorticoids regulated apelin expression through GR activation, although no synergistic effect was observed. Additionally, detailed potential mechanisms involved a p38 MAPK signaling pathway. In conclusion, our findings strengthen the fact that there is a direct interaction between Ald and apelin in adipocytes, which has important implications for hyperaldosteronism or PA-associated cardiometabolic syndrome and hoists apelin on the list of potent therapeutic targets for PA.

Free access

Jennifer A Chalmers, Shuo-Yen J Lin, Tami A Martino, Sara Arab, Peter Liu, Mansoor Husain, Michael J Sole and Denise D Belsham

Neuroendocrine peptides express biologic activity relevant to the cardiovascular system, including regulating heart rate and blood pressure, though little is known about the mechanisms involved. Here, we investigated neuroendocrine gene expression underlying diurnal physiology of the heart. We first used microarray and RT-PCR analysis and demonstrate the simultaneous expression of neuroendocrine genes in normal murine heart, including POMC, GnRH, neuropeptide Y, leptin receptor, GH-releasing hormone, cocaine- and amphetamine-regulated transcript, proglucagon, and galanin. We examined diurnal gene expression profiles, with cosinar bioinformatics to evaluate statistically significant rhythms. The POMC gene exhibits a day/night, circadian or diurnal, pattern of expression in heart, and we postulated that this may be important to cardiac growth and renewal. POMC diurnal gene rhythmicity is altered in pressure-overload cardiac hypertrophy, when compared with control heart, and levels increased at the dark-to-light transition times. These findings are also consistent with the proposal that neuropeptides mediate adverse remodeling processes, such as occur in pathologic hypertrophy. To investigate cellular responses, we screened three cell lines representing fibroblasts, cardiac myocytes, and vascular smooth muscle cells (NIH3T3, heart line 1, and mouse vascular smooth muscle cell line 1 (Movas-1) respectively). POMC mRNA expression is the most notable in Movas-1 cells and, furthermore, exhibits rhythmicity with culture synchronization. Taken together, these results highlight the diverse neuroendocrine mRNA expression profiles in cardiovasculature, and provide a novel model vascular culture system to research the role these neuropeptides play in organ health, integrity, and disease.

Free access

J G Miquet, J F Giani, C S Martinez, M C Muñoz, L González, A I Sotelo, R K Boparai, M M Masternak, A Bartke, F P Dominici and D Turyn

Acromegaly is associated with cardiac hypertrophy, which is believed to be a direct consequence of chronically elevated GH and IGF1. Given that insulin is important for cardiac growth and function, and considering that GH excess induces hyperinsulinemia, insulin resistance, and cardiac alterations, it is of interest to study insulin sensitivity in this tissue under chronic conditions of elevated GH. Transgenic mice overexpressing GH present cardiomegaly and perivascular and interstitial fibrosis in the heart. Mice received an insulin injection, the heart was removed after 2 min, and immunoblotting assays of tissue extracts were performed to evaluate the activation and abundance of insulin-signaling mediators. Insulin-induced tyrosine phosphorylation of the insulin receptor (IR) was conserved in transgenic mice, but the phosphorylation of IR substrate 1 (IRS1), its association with the regulatory subunit of the phosphatidylinositol 3-kinase (PI3K), and the phosphorylation of AKT were decreased. In addition, total content of the glucose transporter GLUT4 was reduced in transgenic mice. Insulin failed to induce the phosphorylation of the mammalian target of rapamycin (mTOR). However, transgenic mice displayed increased basal activation of the IR/IRS1/PI3K/AKT/mTOR and p38 signaling pathways along with higher serine phosphorylation of IRS1, which is recognized as an inhibitory modification. We conclude that GH-overexpressing mice exhibit basal activation of insulin signaling but decreased sensitivity to acute insulin stimulation at several signaling steps downstream of the IR in the heart. These alterations may be associated with the cardiac pathology observed in these animals.