Search Results

You are looking at 91 - 100 of 427 items for

  • Abstract: Atherosclerosis x
  • Abstract: Heart x
  • Abstract: Liver x
  • Abstract: Hypertensive x
  • Abstract: Vasculature x
  • Abstract: Angiotensin x
  • Abstract: Inflammation x
  • Abstract: Mineralocorticoid x
  • Abstract: Cardiac* x
  • Abstract: myocardial x
  • Abstract: Cardio* x
Clear All Modify Search
Free access

Michael Wöltje, Beate Tschöke, Verena von Bülow, Ralf Westenfeld, Bernd Denecke, Steffen Gräber and Willi Jahnen-Dechent

Alpha2HS-glycoprotein/fetuin-A (Ahsg) is a serum protein preventing soft tissue calcification. In trauma and inflammation, Ahsg is down-regulated and therefore considered a negative acute phase protein. Enhancement of Ahsg expression as a protective serum protein is desirable in several diseases including tissue remodelling after trauma and infection, kidney and heart failure, and cancer. Using reporter gene assays in hepatoma cells combined with electrophoretic mobility shift assays we determined that dexamethasone up-regulates hepatic Ahsg. A steroid response unit at position −146/−119 within the mouse Ahsg promoter mediates the glucocorticoid-induced increase of Ahsg mRNA. It binds the hepatocyte nuclear factor 3β and CCAAT enhancer binding protein β (C/EBP-β). The up-regulation is mediated indirectly via glucocorticoid hormone-induced transcriptional up-regulation in C/EBP-β protein. A high degree of sequence identity in mouse, rat and human Ahsg promoters suggests that the promoter is similarly up-regulated by dexamethasone in all three species. Therefore, our findings suggest that glucocorticoids may be used to enhance the level of Ahsg protein circulating in serum.

Open access

Farhana Naznin, Koji Toshinai, T M Zaved Waise, Tadashi Okada, Hideyuki Sakoda and Masamitsu Nakazato

High-fat diet (HFD)-induced metabolic inflammation in the central and peripheral organs contributes to the pathogenesis of obesity. Long-term HFD blunts signaling by ghrelin, a gastric-derived orexigenic peptide, in the vagal afferent nerve via a mechanism involving in situ activation of inflammation. This study was undertaken to investigate whether ghrelin resistance is associated with progressive development of metabolic inflammation. In mice, ghrelin’s orexigenic activity was abolished 2–4 weeks after the commencement of HFD (60% of energy from fat), consistent with the timing of accumulation and activation of macrophages and microglia in the nodose ganglion and hypothalamus. Calorie-restricted weight loss after 12-week HFD feeding restored ghrelin responsiveness and alleviated the upregulation of macrophage/microglia activation markers and inflammatory cytokines. HSP72, a chaperone protein, was upregulated in the hypothalamus of HFD-fed mice, potentially contributing to prevention of irreversible neuron damage. These results demonstrate that ghrelin resistance is reversible following reversal of the HFD-induced inflammation and obesity phenotypes.

Free access

María Angeles Arevalo, María Santos-Galindo, Natalia Lagunas, Iñigo Azcoitia and Luis M Garcia-Segura


Selective estrogen receptor modulators (SERMs), used for the treatment of breast cancer, osteoporosis, and menopausal symptoms, affect the nervous system. Some SERMs trigger neuroprotective mechanisms and reduce neural damage in different experimental models of neural trauma, brain inflammation, neurodegenerative diseases, cognitive impairment, and affective disorders. New SERMs with specific actions on neurons and glial cells may represent promising therapeutic tools for the brain.

Free access

Gilberto Paz-Filho, Claudio Alberto Mastronardi, Brian J Parker, Ainy Khan, Antonio Inserra, Klaus I Matthaei, Monika Ehrhart-Bornstein, Stefan Bornstein, Ma-Li Wong and Julio Licinio

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis are components of the metabolic syndrome. Serum leptin levels are elevated in obesity, but the role of leptin in the pathophysiology of the liver involvement is still unclear. To identify the effects and mechanisms by which leptin influences the pathogenesis of NAFLD, we performed epididymal white adipose tissue (eWAT) transplantation from congenic wild-type mice into the subcutaneous dorsal area of Lep ob/ob recipient mice and compared the results with those of the Lep ob/ob sham-operated mice. The mice were followed for 102–216 days. During killing, the transplanted mice had significantly lost body weight and exhibited significantly higher leptin levels, improved glucose tolerance, and lower liver injury scores than the sham-operated mice. Liver microarray analysis showed that novel pathways related to GA-binding protein (GABP) transcription factor targets, pheromone binding, and olfactory signaling were differentially expressed in the transplanted mice. Our data also replicate pathways known to be involved in NAFLD, such as those involved in the regulation of microRNAs, lipid, glucose, and glutathione metabolism, peroxisome proliferator-activated receptor signaling, cellular regulation, carboxylic acid processes, iron, heme, and tetrapyrrole binding, immunity and inflammation, insulin signaling, cytochrome P450 function, and cancer. Conclusion: wild-type eWAT transplantation into Lep ob/ob mice led to improvements in metabolism, body weight, and liver injury, possibly attributed to the production of leptin by the transplanted eWAT. These improvements were accompanied by the differential expression of novel pathways. The causal relationship between GABP downregulation and NAFLD improvement remains to be determined.

Free access

Qi Zhang, Jing Liu, Jia Liu, Wenhui Huang, Limin Tian, Jinxing Quan, Yunfang Wang and Ruilan Niu

Non-alcoholic fatty liver disease is associated with hepatic microangiopathy and liver inflammation caused by type 2 diabetes mellitus. Oxidised LDL (oxLDL) is involved in proinflammatory and cytotoxic events in various microcirculatory systems. The lectin-like oxLDL receptor 1 (LOX1) plays a crucial role in oxLDL-induced pathological transformation. However, the underlying mechanism of oxLDL's effects on liver microcirculation disturbances remains unclear. In this study, we investigated the effects of oxLDL on LOX1 (OLR1) expression and function, as well as on the fenestration features of human liver sinusoidal endothelial cells (HLSECs) in vitro. Primary HLSECs were obtained and cultured. The cells were treated with various concentrations of oxLDL (25, 50, 100 and 200 μg/ml), and the cytotoxicity and expression of LOX1 were examined. Furthermore, LOX1 knockdown was performed using siRNA technology, and the changes in intracellular reactive oxygen species (ROS), NFκB, p65, (p65), endothelin 1 (ET1 (EDN1)), eNOS (NOS3) and caveolin 1 (CAV1) levels were measured. Cells were treated with 100 μg/ml oxLDL, and the fenestra morphology was visualised using scanning electron microscopy. oxLDL significantly increased LOX1 expression at both the mRNA and protein levels in HLSECs in a dose- and time-dependent manner. oxLDL stimulation increased ROS generation and NFκB activation, upregulated ET1 and caveolin 1 expression, downregulated eNOS expression and reduced the fenestra diameter and porosity. All of these oxLDL-mediated effects were inhibited after LOX1 knockdown. These results reveal a mechanism by which oxLDL stimulates the production of LOX1 through the ROS/NFκB signalling pathway and by which LOX1 mediates oxLDL-induced endothelial injury and the defenestration of HLSECs.

Free access

M Tirard, J Jasbinsek, OF Almeida and TM Michaelidis

Corticosteroid actions in the brain are exerted via the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). These receptors share several structural and functional similarities but their activation in the brain triggers distinct biological actions, for instance on neuronal survival or the regulation of the hypothalamo-pituitary-adrenal axis. Like other hormone-activated receptors, the transcriptional properties of the MR and GR depend on their ability to recruit a variety of co-regulators, which modulate their activity on target promoters, in a specific manner. The N-terminal regions of the MR and GR share the smallest degree of sequence conservation, whereas they display opposite effects on the transactivation properties of these receptors; thus, they may provide surfaces suitable for receptorspecific interactions with co-regulatory proteins. Here, we employed a yeast two-hybrid system to identify molecules interacting with the N-terminal part of the MR (amino acids 170-433). This approach resulted in the isolation of representative cDNAs from all members of the protein inhibitor of activated STAT (PIAS) family of proteins as potential MR-interacting partners. In neural cells, PIAS3 exhibited a strong and specific interaction with MR, but not GR, as indicated by mammalian two-hybrid assays and co-immunoprecipitation experiments in vivo. The interaction with MR was enhanced in the presence of aldosterone, an MR agonist, and was found to occur through a conserved, serine- and acidic amino acid residue-rich domain of PIAS3. To compare the modulatory properties of PIAS proteins on MR and GR transcriptional activity in a neural environment, MMTV reporter gene assays were performed in the human neuroblastoma cell line SK-N-MC. This analysis revealed that PIAS3 can inhibit MR, but not GR, transactivation in response to their corresponding ligands. Further, it showed that PIAS1 and PIASxbeta, but not PIASy, could also inhibit MR-mediated transcription despite the lack of detected physical interaction with MR. Interestingly, PIASxbeta and PIASy dose-dependently co-activated GR, whereas PIAS1 impaired GR-induced transcription. Taken together the results reveal differential modulatory roles of the PIAS proteins on the transcriptional properties of MR and GR, thus providing new insights into the bifurcating actions of these two receptors in neural cells where they are frequently co-localized.

Free access

R Buettner, K G Parhofer, M Woenckhaus, C E Wrede, L A Kunz-Schughart, J Schölmerich and L C Bollheimer

High-fat (HF)-diet rodent models have contributed significantly to the analysis of the pathophysiology of the insulin resistance syndrome, but their phenotype varies distinctly between different studies. Here, we have systematically compared the metabolic and molecular effects of different HF with varying fatty acid compositions. Male Wistar rats were fed HF diets (42% energy; fat sources: HF-L – lard; HF-O – olive oil; HF-C – coconut fat; HF-F – fish oil). Weight, food intake, whole-body insulin tolerance and plasma parameters of glucose and lipid metabolism were measured during a 12-week diet course. Liver histologies and hepatic gene expression profiles, using Affymetrix GeneChips, were obtained. HF-L and HF-O fed rats showed the most pronounced obesity and insulin resistance; insulin sensitivity in HF-C and HF-F was close to normal. Plasma ω-3 polyunsaturated fatty acid (ω-3-PUFA) and saturated fatty acid (C12-C14, SFA) levels were elevated in HF-F and HF-C animals respectively. The liver histologies showed hepatic steatosis in HF-L, HF-O and HF-C without major inflammation. Hepatic SREBP1c-dependent genes were upregulated in these diets, whereas PPARα-dependent genes were predominantly upregulated in HF-F fed rats. We detected classical HF effects only in diets based on lard and olive oil (mainly long-chain, saturated (LC-SFA) and monounsaturated fatty acids (MUFA)). PUFA- or MC-SFA-rich diets did not induce insulin resistance. Diets based on LC-SFA and MUFA induced hepatic steatosis with SREBP1c activation. This points to an intact transcriptional hepatic insulin effect despite resistance to insulin’s metabolic actions.

Restricted access

I M Adcock, M Peters, C Gelder, H Shirasaki, C R Brown and P J Barnes


Substance P has several inflammatory effects on the airways mediated via neurokinin 1 receptors (NK1Rs) and, if released from sensory nerves, may amplify the chronic inflammation seen in asthma. Northern blot analysis of NK1R mRNA in lung showed a 52 ± 10% (s.e.m.; P<0·01) increase in mRNA in the asthmatic lung compared with non-asthmatic control tissue. NK1R mRNA was reduced by 84·5 ± 1·9% after incubation with dexamethasone (1 μm) for 3 h (P<0·01). In contrast, NK2R mRNA was unaltered in asthmatic lungs and dexamethasone treatment had no effect on the level of NK2R mRNA. These results suggest that chronic inflammation in asthma may result in increased NK1R gene expression and that this effect is reversed by glucocorticosteroids.

Free access

Kira Meyerovich, Fernanda Ortis, Florent Allagnat and Alessandra K Cardozo

Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.

Restricted access

C Klett, M Bader, M Schwemmle, D Ganten and E Hackenthal


Several authors have shown that angiotensin II stimulates hepatic angiotensinogen synthesis in vivo, ex vivo and in vitro. In previous studies we have demonstrated that this effect of angiotensin II depends mainly on a transient inhibition of adenylyl cyclase and is the consequence of a stabilization of angiotensinogen mRNA. In the present study we describe the isolation of a polysomal 12 kDa protein which, in band shift and cross link assays, shows a specific affinity to the 3′ untranslated region (3′ UTR) of angiotensinogen mRNA and prevents enzymatic degradation of angiotensinogen mRNA in a cell-free incubation system. [32P]UTP-labelled or unlabelled 3′ fragments of angiotensinogen mRNA were synthesized on a transcription vector (pGEM5zf+) into which the corresponding DNA sequence was cloned after restriction from vector pRAG 16. Binding of the 12 kDa protein to the radioactively labelled 3′ UTR of angiotensinogen mRNA could be displaced by unlabelled 3′ UTR mRNA fragments but not by a renin mRNA of comparable length derived from the coding region, The RNA-binding protein appears to be derived from a higher molecular mass precursor (45 kDa) which is preferentially present under reducing conditions in vitro; the active low molecular mass form is evident in the absence of reducing agents. In a cross link experiment we established that a band shift signal which was obtained in the presence of the 45 kDa protein preparation exclusively depends on RNA binding of the active 12 kDa protein. In addition, a phosphorylation step may be involved in the activation of the 12 kDa protein, since its molecular mass and isoelectric point correlate with proteins which were phosphorylated in response to transient decreases of cAMP (induced by guanfacine or angiotensin II) or in response to a direct inhibition of protein kinase A by the cAMP antagonist Rp-cAMP. The importance of phosphorylation reactions for the stabilization of angiotensinogen mRNA was further assessed in a cell-free incubation system of rat liver parenchymal cells. These studies demonstrated that in the presence of acid phosphatase (1 U/ml) the half-life of angiotensinogen was significantly decreased. In the same incubation system the 12 kDa protein increased the half-life of endogenous as well as of exogenous angiotensinogen mRNA three- to fourfold, while no stabilizing effect was apparent when exogenous angiotensinogen mRNA from which the 3′ tail had been deleted was added. We concluded that an intracellular 12 kDa protein may play a crucial role in the angiotensin Il-induced stabilization of hepatic angiotensinogen mRNA and further suggest that this protein exerts its effect via binding to the 3′ UTR of angiotensinogen mRNA in response to a cAMP-dependent activation step.