Search Results

You are looking at 1 - 10 of 1,005 items for

  • Abstract: Pituitary x
  • Abstract: Brain x
  • Abstract: Tumours x
  • Abstract: Hypothalamus x
  • Abstract: Kisspeptin x
  • Abstract: ACTH x
  • Abstract: TSH x
  • Abstract: Cushing's x
  • Abstract: NETs x
  • Abstract: Paraganglioma x
  • Abstract: Vasopressin x
  • Abstract: neuroendocrine x
  • Abstract: Growth x
Clear All Modify Search
Restricted access

Maya Elena Lee, Aisha Aderayo Tepede, Adel Mandl, Lee Scott Weinstein, Jaydira del Rivero, Sunita K Agarwal and Jenny E. Blau

Gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) comprise a heterogenous and diverse group of neoplasms arising from a common neuroendocrine cell origin. The majority of these tumors occur sporadically while ~20% manifest within the context of hereditary syndromes. Germline MEN1 mutations cause a syndrome with an increased susceptibility to multifocal primary GEP NETs. In addition, MEN1 mutations also occur in sporadic GEP NETs. MEN1 alternations are the most frequent sporadic mutation found in pancreatic neuroendocrine tumors (PNETs). We explore the implication of the loss of the MEN1 encoded protein menin as a key pathogenic driver in subsets of GEP NETs with downstream consequences including upregulation of the oncogenic receptor c-MET (hepatocyte growth factor receptor). This review will summarize the data related to the clinical presentation, therapeutic standards, and outcomes of sporadic and MEN1 associated GEP NETs. We present the data on c-MET expression in GEP NETs, clinical trials using c-MET inhibtors, and provide an overview of the molecular mechanisms by which c-MET inhibition in GEP NETs represents a potential precision-medicine targeted approach.

Open access

Patricia Carrasco, Iratxe Zuazo-Gaztelu and Oriol Casanovas

Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms that arise from cells of the neuroendocrine system. NETs are characterized by being highly vascularized tumors that produce large amounts of proangiogenic factors. Due to their complexity and heterogeneity, progress in the development of successful therapeutic approaches has been limited. For instance, standard chemotherapy-based therapies have proven to be poorly selective for tumor cells and toxic for normal tissues. Considering the urge to develop an efficient therapy to treat NET patients, vascular targeting has been proposed as a new approach to block tumor growth. This review provides an update of the mechanisms regulating different components of vessels and their contribution to tumor progression in order to develop new therapeutic drugs. Following the description of classical anti-angiogenic therapies that target VEGF pathway, new angiogenic targets such as PDGFs, EGFs, FGFs and semaphorins are further explored. Based on recent research in the field, the combination of therapies that target multiple and different components of vessel formation would be the best approach to specifically target NETs and inhibit tumor growth.

Restricted access

Isadora C Furigo, Pryscila D S Teixeira, Paula G F Quaresma, Naira S Mansano, Renata Frazão and Jose Donato Jr

AgRP neurons are important players in the control of energy homeostasis and are responsive to several hormones. In addition, STAT5 signalling in the brain, which is activated by metabolic hormones and growth factors, modulates food intake, body fat and glucose homeostasis. Given that, and the absence of studies that describe STAT5 function in AgRP cells, the present study investigated the metabolic effects of Stat5a/b gene ablation in these neurons. We observed that STAT5 signalling in AgRP neurons regulates body fat in female mice. However, male and female STAT5-knockout mice did not exhibit altered food intake, energy expenditure or glucose homeostasis compared to control mice. The counter-regulatory response or glucoprivic hyperphagia induced by 2-deoxy-d-glucose treatment were also not affected by AgRP-specific STAT5 ablation. However, under 60% food restriction, AgRP STAT5-knockout mice had a blunted upregulation of hypothalamic Agrp mRNA expression and corticosterone serum levels compared to control mice, suggesting a possible role for STAT5 in AgRP neurons for neuroendocrine adaptations to food restriction. Interestingly, ad libitum fed knockout male mice had reduced Pomc and Ucp-1 mRNA expression compared to control group. Taken together, these results suggest that STAT5 signalling in AgRP neurons regulates body adiposity in female mice, as well as some neuroendocrine adaptations to food restriction.

Free access

Melanie Sapochnik, Mariana Fuertes and Eduardo Arzt

IL-6 is a pleiotropic cytokine with multiple pathophysiological functions. As a key factor of the senescence secretome, it can not only promote tumorigenesis and cell proliferation but also exert tumor suppressive functions, depending on the cellular context. IL-6, as do other cytokines, plays important roles in the function, growth and neuroendocrine responses of the anterior pituitary gland. The multiple actions of IL-6 on normal and adenomatous pituitary function, cell proliferation, angiogenesis and extracellular matrix remodeling indicate its importance in the regulation of the anterior pituitary. Pituitary tumors are mostly benign adenomas with low mitotic index and rarely became malignant. Premature senescence occurs in slow-growing benign tumors, like pituitary adenomas. The dual role of IL-6 in senescence and tumorigenesis is well represented in pituitary tumor development, as it has been demonstrated that effects of paracrine IL-6 may allow initial pituitary cell growth, whereas autocrine IL-6 in the same tumor triggers senescence and restrains aggressive growth and malignant transformation. IL-6 is instrumental in promotion and maintenance of the senescence program in pituitary adenomas.

Free access

Clemens Wagner, S Roy Caplan and Gloria S Tannenbaum

Growth hormone (GH) is secreted in a pulsatile fashion from the pituitary gland into the circulation. Release is governed by two hypothalamic neuropeptides, growth hormone-releasing hormone (GHRH) and somatostatin (SRIF), resulting in secretion episodes with a periodicity of 3.3 h in the male rat. Ghrelin is an additional recently identified potent GH-secretagogue. However, its in vivo interactions with the GH neuroendocrine axis remain to be elucidated. Moreover, two different sites of ghrelin synthesis are involved, the stomach and the hypothalamus. We used our previously developed core model of GH oscillations and added the sites of ghrelin action at the pituitary and in the hypothalamus. With this extended model, we simulated the effects of central and peripheral ghrelin injections, monitored the GH profile and compared it with existing experimental results. Systemically administered ghrelin elicits a GH pulse independent of SRIF, but only in the presence of GHRH. The peripheral ghrelin signal is mediated to the brain via the vagus nerve, where it augments the release of GHRH and stimulates the secretion of neuropeptide-Y (NPY). By contrast, centrally administered ghrelin initiates a GH pulse by increasing the GHRH level and by antagonizing the SRIF block at the pituitary. In addition, NPY neurons are activated, which trigger a delayed SRIF surge. The major novel features of the present model are a) the role played by NPY, and b) the dissimilar functions of ghrelin in the hypothalamus and at the pituitary. Furthermore, the predictions of the model were experimentally examined and confirmed.

Free access

Shirlene X Ong, Keefe Chng, Michael J Meaney and Jan P Buschdorf

During pregnancy, glucocorticoids transfer environmental signals to the growing brain and its associated neuroendocrine system to modulate their maturation and function during adolescence and adulthood. Increased in utero exposure to glucocorticoids is associated with impaired fetal growth resulting in low birth weight (LBW) and compromised neural development. The underlying molecular changes affecting brain development, however, are largely unknown. Here, we compared the relative mRNA expression of genes directly involved in glucocorticoid signaling in the hippocampus, amygdala, and cortex of female non-human primate neonates (Macaca fascicularis) of naturally occurring normal birth weight and LBW. We focused on the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) genes as well as that for 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and found a significantly decreased MR:GR mRNA ratio in the hippocampus and lower expression of 11β-HSD1 in the amygdala associated with LBW. The MR:GR mRNA ratio in the amygdala and cortex was not associated with birth weight, reflecting tissue-specific effects. Protein quantification in the hippocampus confirmed our finding of a decreased hippocampal MR:GR ratio. Our data suggest that the MR:GR ratio in the hippocampus and the expression of 11β-HSD1 in the amygdala are associated with intrauterine growth restriction in non-human primates during early perinatal development.

Free access

Rosa Chung and Cory J Xian

Injuries to the growth plate cartilage often lead to bony repair, resulting in bone growth defects such as limb length discrepancy and angulation deformity in children. Currently utilised corrective surgeries are highly invasive and limited in their effectiveness, and there are no known biological therapies to induce cartilage regeneration and prevent the undesirable bony repair. In the last 2 decades, studies have investigated the cellular and molecular events that lead to bony repair at the injured growth plate including the identification of the four phases of injury repair responses (inflammatory, fibrogenic, osteogenic and remodelling), the important role of inflammatory cytokine tumour necrosis factor alpha in regulating downstream repair responses, the role of chemotactic and mitogenic platelet-derived growth factor in the fibrogenic response, the involvement and roles of bone morphogenic protein and Wnt/B-catenin signalling pathways, as well as vascular endothelial growth factor-based angiogenesis during the osteogenic response. These new findings could potentially lead to identification of new targets for developing a future biological therapy. In addition, recent advances in cartilage tissue engineering highlight the promising potential for utilising multipotent mesenchymal stem cells (MSCs) for inducing regeneration of injured growth plate cartilage. This review aims to summarise current understanding of the mechanisms for growth plate injury repair and discuss some progress, potential and challenges of MSC-based therapies to induce growth plate cartilage regeneration in combination with chemotactic and chondrogenic growth factors and supporting scaffolds.

Open access

Elizabeth M Pritchett, Susan J Lamont and Carl J Schmidt

The pituitary gland is a neuroendocrine organ that works closely with the hypothalamus to affect multiple processes within the body including the stress response, metabolism, growth and immune function. Relative tissue expression (rEx) is a transcriptome analysis method that compares the genes expressed in a particular tissue to the genes expressed in all other tissues with available data. Using rEx, the aim of this study was to identify genes that are uniquely or more abundantly expressed in the pituitary when compared to all other collected chicken tissues. We applied rEx to define genes enriched in the chicken pituitaries at days 21, 22 and 42 post-hatch. rEx analysis identified 25 genes shared between all time points, 295 genes shared between days 21 and 22 and 407 genes unique to day 42. The 25 genes shared by all time points are involved in morphogenesis and general nervous tissue development. The 295 shared genes between days 21 and 22 are involved in neurogenesis and nervous system development and differentiation. The 407 unique day 42 genes are involved in pituitary development, endocrine system development and other hormonally related gene ontology terms. Overall, rEx analysis indicates a focus on nervous system/tissue development at days 21 and 22. By day 42, in addition to nervous tissue development, there is expression of genes involved in the endocrine system, possibly for maturation and preparation for reproduction. This study defines the transcriptome of the chicken pituitary gland and aids in understanding the expressed genes critical to its function and maturation.

Free access

Elena Ivanova and Gavin Kelsey

Genomic imprinting is an important and enigmatic form of gene regulation in mammals in which one copy of a gene is silenced in a manner determined by its parental history. Imprinted genes range from those with constitutive monoallelic silencing to those, typically more remote from imprinting control regions, that display developmentally regulated, tissue-specific or partial monoallelic expression. This diversity may make these genes, and the processes they control, more or less sensitive to factors that modify or disrupt epigenetic marks. Imprinted genes have important functions in development and physiology, including major endocrine/neuroendocrine axes. Owing to is central role in coordinating growth, metabolism and reproduction, as well as evidence from genetic and knockout studies, the hypothalamus may be a focus for imprinted gene action. Are there unifying principles that explain why a gene should be imprinted? Conflict between parental genomes over limiting maternal resources, but also co-adaptation between mothers and offspring, have been invoked to explain the evolution of imprinting. Recent reports suggest there may be many more genes imprinted in the hypothalamus than hitherto expected, and it will be important for these new candidates to be validated and to determine whether they conform to current notions of how imprinting is regulated. In fully evaluating the role of imprinted genes in the hypothalamus, much work needs to be done to identify the specific neuronal populations in which particular genes are expressed, establish whether there are pathways in common and whether imprinted genes are involved in long-term programming of hypothalamic functions.

Free access

Jennifer A Chalmers, Shuo-Yen J Lin, Tami A Martino, Sara Arab, Peter Liu, Mansoor Husain, Michael J Sole and Denise D Belsham

Neuroendocrine peptides express biologic activity relevant to the cardiovascular system, including regulating heart rate and blood pressure, though little is known about the mechanisms involved. Here, we investigated neuroendocrine gene expression underlying diurnal physiology of the heart. We first used microarray and RT-PCR analysis and demonstrate the simultaneous expression of neuroendocrine genes in normal murine heart, including POMC, GnRH, neuropeptide Y, leptin receptor, GH-releasing hormone, cocaine- and amphetamine-regulated transcript, proglucagon, and galanin. We examined diurnal gene expression profiles, with cosinar bioinformatics to evaluate statistically significant rhythms. The POMC gene exhibits a day/night, circadian or diurnal, pattern of expression in heart, and we postulated that this may be important to cardiac growth and renewal. POMC diurnal gene rhythmicity is altered in pressure-overload cardiac hypertrophy, when compared with control heart, and levels increased at the dark-to-light transition times. These findings are also consistent with the proposal that neuropeptides mediate adverse remodeling processes, such as occur in pathologic hypertrophy. To investigate cellular responses, we screened three cell lines representing fibroblasts, cardiac myocytes, and vascular smooth muscle cells (NIH3T3, heart line 1, and mouse vascular smooth muscle cell line 1 (Movas-1) respectively). POMC mRNA expression is the most notable in Movas-1 cells and, furthermore, exhibits rhythmicity with culture synchronization. Taken together, these results highlight the diverse neuroendocrine mRNA expression profiles in cardiovasculature, and provide a novel model vascular culture system to research the role these neuropeptides play in organ health, integrity, and disease.