Search Results

You are looking at 71 - 80 of 232 items for

  • Abstract: Mineralocorticoids x
  • Abstract: Aldosterone x
  • Abstract: Sodium x
  • Abstract: Cortisol x
  • Abstract: Hypertension x
  • Abstract: Adrenal x
  • All content x
Clear All Modify Search
Restricted access

K. Yang, G. L. Hammond, and J. R. G. Challis


Fetal sheep tissues possess glucocorticoid receptors (GR), and these change in number during the last two-thirds of gestation. There is, however, no information about developmental changes in tissue GR mRNA levels which might account for alterations in fetal GR content. We have therefore cloned and sequenced a 942 bp GR cDNA from a sheep liver cDNA library, and used it to study the relative abundance of GR mRNA in fetal and neonatal sheep tissues. Analysis of the cDNA revealed a partial sequence of the ovine GR which displayed over 80% identity with residues 143–453 in human GR and 163–472 in rat GR. Furthermore, the first zinc finger motif in these receptors was perfectly conserved among species. The relative abundance of GR mRNA was studied in hypothalami, anterior pituitary glands and adrenals in fetuses at days 60–70, 100–110, 125–130 and at term (approximately 145 days), and in newborn lambs. Total RNA extracts (20 μg) were analysed by Northern blot analysis. A single 5.6kb transcript was detected in all three fetal tissues, and its relative abundance did not change significantly throughout gestation. However, in newborn lambs, levels of GR mRNA increased significantly in the hypothalamus and pituitary gland but decreased to undetectable levels in the adrenal. These tissue-specific changes in the relative abundance of GR mRNA did not correlate with alterations in GR content in fetal tissues, which suggests that the latter may reflect alterations in GR mRNA translation, subsequent modifications and/or GR turnover. In addition, the pattern of developmental changes in GR mRNA content of the adrenal differs from that of the hypothalamus and pituitary gland in neonatal lambs, and indicates that tissue-specific factors may influence GR gene expression in neonatal sheep.

Free access

ME Baker

The recent cloning by Thornton (2001) of estrogen, progesterone and corticoid receptors from lamprey provides important insights into the early evolution of adrenal and sex steroid receptors and an opportunity to elucidate the ancient steroids that regulated gene transcription. Inclusion of lamprey sequences in a steroid receptor phylogeny indicates that the estrogen receptor is the most ancient of these receptors, followed by the progesterone receptor and the corticoid receptor. Thornton proposed that estradiol was the earliest of the steroids to activate a steroid receptor. An alternative hypothesis is that a steroid in the Delta(5) pathway activated the ancestral estrogen receptor.

Restricted access

B J Whitehouse and D R E Abayasekara


The role played by cyclic AMP (cAMP)-dependent protein kinases (PKAs) in rat adrenal steroidogenesis has been investigated using cAMP analogues which show partial selectivity for the type I and type II PKA isoenzymes. These were aminohexylamino-cAMP (AHA-cAMP; selective for site 1 on type I PKA), N 6-benzoyl-cAMP (BZ-cAMP; selective for site 2 on PKA types I and II) and 8-thiomethyl-cAMP (TM-cAMP; selective for site 1 on type II PKA). Positive cooperativity exists between the two nucleotide-binding sites, thus the presence of type I PKA was inferred when synergistic increases in corticosteroid production were obtained with AHA-cAMP plus BZ-cAMP and that of type II PKA when synergistic increases were obtained with TM-cAMP plus BZ-cAMP.

The effects of AHA-cAMP, TM-cAMP and BZ-cAMP (10–100 μmol/l) on aldosterone production by glomerulosa cell preparations and corticosterone production by fasciculata/reticularis cell preparations were compared. Dose-related stimulation of steroid production was obtained with each cAMP analogue in both types of cell preparation. Experiments were performed using the cAMP analogues in combination at doses which gave minimal stimulation individually. Cells were incubated with AHA-cAMP (66 and 100 μmol/l) or TM-cAMP (15, 30 and 45 μmol/l) in the presence and absence of 15μmol BZ-cAMP/l. Synergistic responses were obtained with both analogue pairs in both cell types. The synergism ratio in fasciculata/reticularis cell preparations for the type I PKA selective pair of analogues (100 μmol AHA-cAMP/l plus 15μmol BZ-cAMP/l) was significantly higher (P<0·01) than that for the type II selective pair (45μmol TM-cAMP/l plus 15μmol BZ-cAMP/l; 7·9±1·2 (mean±s.e.m.) and 2·6±0·3 respectively). In zona glomerulosa preparations the ratio was higher (P<0·05) for the type II selective pair (1·6±0·1 for AHA-cAMP plus BZ-cAMP and 2·8±0·4 for TM-cAMP plus BZ-cAMP).

The effects of 100μmol AHA-cAMP/l and 45μmol TM-cAMP/l on the response to ACTH (1 pmol/l–10 nmol/l) were examined. Synergistic responses were obtained in fasciculata/reticularis cells with both analogues in combination with low concentrations of ACTH (10 and 100 pmol/l). In zona glomerulosa cells only the addition of TM-cAMP (45 μmol/l) in combination with 10 pmol ACTH/1 gave rise to synergistic increases in aldosterone production, which suggests that there may be some compartmentalization of the cAMP-dependent pathway in these cells.

The results indicate that both isoenzymes of PKA are present in rat adrenocortical cells and can play a part in the control of steroidogenesis. Type I PKA activity appears dominant in the control of zona fasciculata/reticularis cell function whereas modulation of type II PKA activity plays a more significant role in the responses of zona glomerulosa cells.

Open access

Irina G Bogdarina, Peter J King, and Adrian J L Clark

Angiotensin II acts through two pharmacologically distinct receptors known as AT1 and AT2. Duplication of the AT1 receptor in rodents into At1a and b subtypes allows tissue-specific expression of the AT1b in adrenal and pituitary tissue. Adrenal expression of this receptor is increased in the offspring of rat mothers exposed to a low-protein diet and this is associated with the undermethylation of its promoter. This phenomenon is blocked by the inhibition of maternal glucocorticoid synthesis by metyrapone. We have mapped the transcriptional start site of the promoter and demonstrated that a 1.2 kbp fragment upsteam of this site is effective in driving luciferase expression in mouse Y1 cells. A combination of bioinformatic analysis, electrophoretic mobility shift analysis (EMSA), and mutagenesis studies demonstrates: i) the presence of a putative TATA box and CAAT box; ii) the presence of three Sp1 response elements, capable of binding SP1; mutation of any pair of these sites effectively disables this promoter; iii) the presence of four potential glucocorticoid response elements which each bind glucocorticoid receptor in EMSA, although only two confer dexamethasone inhibition on the promoter; iv) the presence of two AP1 sites. Mutagenesis of the distal AP1 site greatly diminishes promoter function but this is also associated with the loss of dexamethasone inhibition. These studies will facilitate an understanding of the mechanisms by which fetal programming leads to long term alterations in gene expression and the development of adult disease.

Free access

Luke A Noon, Artem Bakmanidis, Adrian J L Clark, Peter J O’Shaughnessy, and Peter J King

The ACTH receptor melanocortin 2 receptor (MC2-R) is a G-protein-coupled receptor principally expressed in the adrenal cortex and the adipocyte, where it stimulates steroidogenesis and lipolysis respectively. The coding region of the murine gene is encoded by a single exon, although three upstream non-coding exons have been documented, one of which is incorporated by alternative splicing in adrenal cells. We have detected a novel transcript in adipocytes, which includes a previously unidentified 86 bp exon upstream of the coding region. This transcript appears with slower kinetics during a time course of differentiation of 3T3-L1 cells and is much more highly expressed in these cells and murine adipose tissues than in the Y1 murine adrenocortical cell line, also it is undetectable in murine foetal testes. Inclusion of this exon extends the 5′ UTR to 468 bp and introduces three upstream open reading frames. These are typical features of mRNAs under translational control and imply that the MC2-R gene is regulated both transcriptionally and post-transcriptionally during adipogenesis.

Free access

MB Sewer and MR Waterman

Steroid hormone biosynthesis in the adrenal cortex is controlled by the peptide hormone adrenocorticotropin (ACTH), which acts to increase intracellular cAMP and results in the activation of cAMP-dependent protein kinase A (PKA) and subsequent increase in steroidogenic gene transcription. Protein phosphorylation by PKA activates transcription of genes encoding steroidogenic enzymes; however the precise proteins which are phosphorylated remain to be determined. We have recently shown that phosphoprotein phosphatase (PP) activity is essential for cAMP-dependent transcription of the human CYP17 (hCYP17) gene in H295R adrenocortical cells. The aim of our current studies was to determine if inhibition of PP activity attenuates cAMP-dependent mRNA expression of other steroidogenic genes in H295R cells. Using various inhibitors of serine/threonine and tyrosine PPs, we examined the role of phosphatase activity on cAMP-dependent transcription of steroidogenic genes in the adrenal cortex. CYP11A, CYP11B1/2, CYP21, and adrenodoxin also require PP activity for cAMP-stimulated gene expression. Inhibition of both serine/threonine and tyrosine PP activities suppresses the cAMP-dependent mRNA expression of several steroidogenic genes, suggesting that a dual-specificity PP is essential for conveying ACTH/cAMP-stimulated transcription. We propose that PKA phosphorylates and activates a dual-specificity phosphatase, which mediates steroidogenic gene transcription in response to ACTH/cAMP.

Restricted access

M Montiel, S Barker, G P Vinson, and E Jiménez


The angiotensin II (Ang II)-binding sites in rat adrenal gland membranes were characterized using 125I-radiolabelled Ang II. While Scatchard analysis identified a single population of Ang II receptor sites, isoelectric focusing (IEF) on polyacrylamide gels revealed four peaks of specific Ang II binding which migrated to isoelectric points (pI values) 6·8, 6·7, 6·5 and 6·3. In binding assays in the presence of an excess of the Ang II receptor AT1 subtype antagonist DuP 753, a monophasic dose-dependent displacement of 125I-labelled Ang II binding by the Ang II receptor AT2 subtype antagonist CGP42112A was observed, and vice versa. In this system, reduction of disulphide bridges using 1 mmol dithiothreitol (DTT)/l markedly increased the number of binding sites in the adrenal zona glomerulosa without affecting receptor affinity.

Using IEF, it was found that both DuP 753 and CGP42112A were able to reduce specific binding of each of the four peaks to some extent. However, the predominant effect of DuP 753 was to reduce the labelling of the isoform at pI 6·7 substantially, while CGP42112A significantly inhibited the specific 125I-labelled Ang II binding to the pI 6·3 isoform. When DuP 753 and CGP42112A were used together, specific binding of 125I-labelled Ang II to the isoforms of pI values 6·8, 6·7 and 6·3 was completely eliminated. These data suggest that the four peaks of specific binding found may be composed of different isoforms of both AT1 and AT2 receptor subtypes and that the Ang II receptor isoforms which migrated to pI 6·7 and pI 6·3 are predominantly composed of AT1 and AT2 receptor subtypes respectively. Interestingly, in the presence of both antagonists, 8·7 ± 0·9% of the specific binding migrating at pI 6·5 remained unaffected. This finding suggests the presence of an additional subtype, which is neither AT1 nor AT2, in the rat adrenal zona glomerulosa.

In further studies, pretreatment with DTT was found to increase the specific 125I-labelled Ang II binding of all four isoforms. Moreover, DTT also produced a further specific binding component between pI 6·5 and pI 6·7 which exhibited AT2 subtype pharmacology in DTT-treated preparations. Since DTT has been reported to enhance only AT2 subtype binding this also suggests that the different isoforms may contain components related to both AT1 and AT2 receptor subtypes.

Restricted access

S Barker, W Marchant, M M Ho, J R Puddefoot, J P Hinson, A J L Clark, and G P Vinson


We have generated hybridomas which secrete monoclonal antibodies to the AT1 subtype of the angiotensin II receptor (AT1 receptor). These were obtained after immunization of Balb C/c mice with synthetic peptides representing sequences from either the extracellular domain (residues 8-17) or the intracellular domain (residues 229-237) of the AT1 receptor.

Hybridoma populations were first screened for the production of antibodies which bound to rat liver cells. Further selection, and cloning by limiting dilution, was carried out for antibodies which bound specifically to rat adrenal glomerulosa cells. Confirmation that the antibody designated 6313/G2 interacted with the angiotensin II receptor was obtained using COS-7 cells transfected with AT1A receptor cDNA. In particular, the initial characterization of 6313/G2 showed specific immunofluorescence of vascular endothelium.

Free access

Russell A Prough, Barbara J Clark, and Carolyn M Klinge

Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA), secreted by the adrenal cortex, gastrointestinal tract, gonads, and brain, and its sulfated metabolite DHEA-S are the most abundant endogeneous circulating steroid hormones. DHEA actions are classically associated with age-related changes in cardiovascular tissues, female fertility, metabolism, and neuronal/CNS functions. Early work on DHEA action focused on the metabolism to more potent sex hormones, testosterone and estradiol, and the subsequent effect on the activation of the androgen and estrogen steroid receptors. However, it is now clear that DHEA and DHEA-S act directly as ligands for many hepatic nuclear receptors and G-protein-coupled receptors. In addition, it can function to mediate acute cell signaling pathways. This review summarizes the molecular mechanisms by which DHEA acts in cells and animal models with a focus on the ‘novel’ and physiological modes of DHEA action.

Free access

Anke Schennink, Josephine F Trott, Bradley A Freking, and Russell C Hovey

Endocrine, paracrine, and autocrine prolactin (PRL) acts through its receptor (PRLR) to confer a wide range of biological functions, including its established role during lactation. We have identified a novel first exon of the porcine PRLR that gives rise to three different mRNA transcripts. Transcription of this first exon is tissue specific, where it increases during gestation in the adrenal glands and uterus. Within the mammary glands, its transcription is induced by estrogen and PRL, while in the uterus, its expression is downregulated by progestin. The promoter region has an enhancer element located between −453 and −424 bp and a putative repressor element between −648 and −596 bp. Estrogen, acting through the estrogen receptor, activates transcription from this promoter through both E-box and transcription factor AP-2 α binding sites. These findings support the concept that the multilevel hormonal regulation of PRLR transcription contributes to the various biological functions of PRL.