Search Results

You are looking at 51 - 60 of 232 items for

  • Abstract: Mineralocorticoids x
  • Abstract: Aldosterone x
  • Abstract: Sodium x
  • Abstract: Cortisol x
  • Abstract: Hypertension x
  • Abstract: Adrenal x
  • All content x
Clear All Modify Search
Free access

Andrew B Bicknell

The peptide hormones contained within the sequence of proopiomelanocortin (POMC) have diverse roles ranging from pigmentation to regulation of adrenal function to control of our appetite. It is generally acknowledged to be the archetypal hormone precursor, and as its biology has been unravelled, so too have many of the basic principles of hormone biosynthesis and processing. This short review focuses on one group of its peptide products, namely, those derived from the N-terminal of POMC and their role in the regulation of adrenal growth. From a historical and a personal perspective, it describes how their role in regulating proliferation of the adrenal cortex was identified and also highlights the key questions that remain to be answered.

Free access

Inga K Johnsen and Felix Beuschlein

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β superfamily of ligands that impact on a multitude of biological processes including cell type specification, differentiation and organogenesis. Furthermore, a large body of evidence points towards important BMP-dependent mechanisms in tumorigenesis. In accordance with their diverse actions, BMPs have been demonstrated to serve as auto-, para- and endocrine modulators also in a number of hormonal systems. In this review, we highlight novel aspects of BMP-dependent regulatory networks that pertain to adrenal physiology and disease, which have been uncovered during recent years. These aspects include the role of BMP-dependent mechanism during adrenal development, modulating effects on catecholamine synthesis and steroidogenesis and dysregulation of BMP signalling in adrenal tumorigenesis. Furthermore, we summarize potential therapeutic approaches that are based on reconstitution of BMP signalling in adrenocortical tumour cells.

Free access

Jyotsna B Pippal and Peter J Fuller

The signature action of aldosterone in the regulation of electrolyte and fluid balance is well established. However, the role of aldosterone as an important contributor to morbidity and mortality in heart failure has gained a heightened interest in recent years, but the mechanisms of this action are not well understood. Aldosterone is the principal physiological ligand for the mineralocorticoid receptor (MR), a ligand-activated transcription factor, that also binds to the physiological glucocorticoid, cortisol. Both classes of hormones bind with similar affinity to the MR, but the molecular basis of selective and tissue-specific effects of MR ligands is not yet fully documented. The structural and functional determinants of MR function are described and their significance is discussed.

Free access

M Tirard, J Jasbinsek, OF Almeida, and TM Michaelidis

Corticosteroid actions in the brain are exerted via the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). These receptors share several structural and functional similarities but their activation in the brain triggers distinct biological actions, for instance on neuronal survival or the regulation of the hypothalamo-pituitary-adrenal axis. Like other hormone-activated receptors, the transcriptional properties of the MR and GR depend on their ability to recruit a variety of co-regulators, which modulate their activity on target promoters, in a specific manner. The N-terminal regions of the MR and GR share the smallest degree of sequence conservation, whereas they display opposite effects on the transactivation properties of these receptors; thus, they may provide surfaces suitable for receptorspecific interactions with co-regulatory proteins. Here, we employed a yeast two-hybrid system to identify molecules interacting with the N-terminal part of the MR (amino acids 170-433). This approach resulted in the isolation of representative cDNAs from all members of the protein inhibitor of activated STAT (PIAS) family of proteins as potential MR-interacting partners. In neural cells, PIAS3 exhibited a strong and specific interaction with MR, but not GR, as indicated by mammalian two-hybrid assays and co-immunoprecipitation experiments in vivo. The interaction with MR was enhanced in the presence of aldosterone, an MR agonist, and was found to occur through a conserved, serine- and acidic amino acid residue-rich domain of PIAS3. To compare the modulatory properties of PIAS proteins on MR and GR transcriptional activity in a neural environment, MMTV reporter gene assays were performed in the human neuroblastoma cell line SK-N-MC. This analysis revealed that PIAS3 can inhibit MR, but not GR, transactivation in response to their corresponding ligands. Further, it showed that PIAS1 and PIASxbeta, but not PIASy, could also inhibit MR-mediated transcription despite the lack of detected physical interaction with MR. Interestingly, PIASxbeta and PIASy dose-dependently co-activated GR, whereas PIAS1 impaired GR-induced transcription. Taken together the results reveal differential modulatory roles of the PIAS proteins on the transcriptional properties of MR and GR, thus providing new insights into the bifurcating actions of these two receptors in neural cells where they are frequently co-localized.

Free access

ZN Wang, M Bassett, and WE Rainey

Liver receptor homologue-1 (LRH-1, designated NR5A2) is a mammalian homologue of Drosophila fushi tarazu factor (dFTZ-F1) and structurally belongs to the orphan nuclear receptor superfamily. LRH-1 can recognize the DNA sequence 5'-AAGGTCA-3', the canonical recognition motif for steroidogenic factor 1 (SF-1). Herein, we hypothesized that LRH-1 might play a role in the regulation of human adrenal expression of steroidogenic enzymes. To test this hypothesis, LRH-1 expression in human adult and fetal adrenal glands was examined by RT-PCR analysis. The fetal and adult adrenal glands, as well as liver and pancreas, were observed to express LRH-1 mRNA using RT-PCR. The ability of LRH-1 to enhance transcription of the gene encoding human 11 beta- hydroxylase (hCYP11B1) was then examined using the H295R adrenal cell line. LRH-1 co-transfection with hCYP11B1 luciferase promoter constructs caused a 25-fold induction of luciferase activity. Furthermore, co-transfection of a hCYP11B1 reporter construct containing a mutation in the SF-1 binding cis-element abolished the stimulatory effect of both SF-1 and LRH-1. Electrophoretic mobility shift assay (EMSA) demonstrated that LRH-1 could bind to the SF-1 response element. Taken together, our data suggested that LRH-1 is expressed in the adrenal, and can substitute for SF-1 to enhance transcription of genes encoding certain of the steroid-metabolizing enzymes. A role for LRH-1 in the regulation of adrenal or gonadal steroid hormone production should be further studied.

Free access

Anna Riester, Ariadni Spyroglou, Adi Neufeld-Cohen, Alon Chen, and Felix Beuschlein

Urocortin (UCN) 1, 2, and 3 are members of the corticotropin-releasing factor (CRF) family that display varying affinities to the CRF receptor 1 (CRFR1 (CRHR1)) and 2 (CRFR2 (CRHR2)). UCNs represent important modulators of stress responses and are involved in the control of anxiety and related disorders. In addition to the CNS, UCNs and CRFRs are highly expressed in several tissues including the adrenal gland, indicating the presence of UCN-dependent regulatory mechanisms in these peripheral organ systems. Using knockout (KO) mouse models lacking single or multiple Ucn genes, we examined the potential role of the three different Ucns on morphology and function of the adrenal gland. Adrenal morphology was investigated, organ size, cell size, and number were quantified, and growth kinetics were studied by proliferative cell nuclear antigen staining and Ccnd1 expression analysis. Furthermore, mRNA expression of enzymes involved in steroidogenesis and catecholamine synthesis was quantified by real-time PCR. Following this approach, Ucn2, Ucn1/Ucn2 dKO and Ucn1/Ucn2/Ucn3 tKO animals showed a significant cellular hypotrophy of the adrenal cortex and an increase in Ccnd1 expression, whereas in all other genotypes, no changes were observable in comparison to age-matched controls. For steroidogenesis, Ucn2/Ucn3 dKO animals displayed the most pronounced changes, with significant increases in all investigated enzymes, providing indirect evidence for increased stress behavior. Taken together, these data suggest that mainly Ucn2 and Ucn3 could be involved in adrenal stress response regulation while Ucn2 additionally appears to play a role in morphology and growth of the adrenal gland.

Restricted access

E. D. Lephart, E. R. Simpson, and W. H. Trzeciak

ABSTRACT

To investigate the effects of sex hormones on 5α-reductase, we examined 5α-reductase mRNA content and enzyme activity in the adrenal cortex of peripubertal male and female rats. In male rats, the influence of castration or hormone-replacement treatment with dihydrotestosterone (5α-DHT) on 5α-reductase was assessed. To stimulate ovarian sex hormone production in immature female rats, the effect of a single injection of 5 IU pregnant mare serum gonadotrophin (PMSG) on 5α-reductase was examined. The efficacy of the treatments was demonstrated by measuring serum LH and ventral prostate weight in male rats, and serum oestradiol and ovarian weight in female rats. Growth hormone was also measured across all treatments in male and female rats. Adrenal 5α-reductase mRNA levels were determined by RNA blot analysis utilizing a rat 5α-reductase cDNA as probe. 5α-Reductase enzyme activity was estimated by isolating [ 3H]5α-DHT by thin-layer chromatography after incubation with [3H]testosterone. The identity of the [3H]5α-DHT formed was demonstrated by recrystallization of the derivatized DHT to constant specific activity. In controls, adrenal cortical 5α-reductase mRNA content was nearly four times higher in immature female rats compared with intact peripubertal males. Castration resulted in a sevenfold increase in adrenal 5α-reductase mRNA content compared with that in intact controls, while in DHT-injected castrated animals the mRNA level was nearly undetectable. The content of adrenal 5α-reductase mRNA in anoestrous rats was nearly four times higher than in PMSG-treated animals. Adrenal 5α-reductase activity was higher in immature female rats than in intact peripubertal males. Castrated rats displayed more than a threefold increase in 5α-reductase activity over that of controls, whereas the activity values were below controls in castrated animals treated with DHT. In immature female rats treated with PMSG, 5α-reductase activity decreased by 40% to that of anoestrous controls. These results indicate that in the rat adrenal cortex the content of mRNA encoding 5α-reductase is negatively regulated by sex hormones presumably at the transcriptional level. Suppression of the enzymatic activity of adrenal 5α-reductase by sex hormones is due to lower mRNA levels encoding this protein.

Restricted access

F Lü, K Yang, V K M Han, and J R G Challis

ABSTRACT

Activation of the fetal pituitary-adrenal axis is crucial for fetal organ maturation and the onset of parturition in sheep. Many factors including corticotrophin-releasing hormone (CRH) and arginine vasopressin secreted from the hypothalamus, and growth factors produced within the pituitary may be involved in the regulation of maturation of the fetal pituitary gland. IGFs have mitogenic and differentiation-promoting capacities in a variety of organs and are synthesized as paracrine factors within developing tissues. However, there is little information concerning the synthesis, distribution, regulation and function of IGFs in the fetal pituitary gland at different times during pregnancy. Therefore, we have localized IGF-I and IGF-II mRNAs and peptides, and determined the effect of cortisol on the level of IGF-II mRNAs in the pituitary glands of developing sheep fetuses. We examined the possible effects of IGFs on corticotroph function in cultures of adenohypophysial cells from term fetuses.

Seven species of IGF-II transcripts of 1·2–6·0 kb were identified by Northern blot analysis in the pituitary gland of fetuses between day 60 of gestation and term (day 145). The levels of IGF-II mRNAs did not change significantly during pregnancy, although there was a trend for the presence of higher levels of IGF-II mRNAs at day 60 of gestation. IGF-I mRNA was not detectable. By in situ hybridization, IGF-II mRNA was localized to non-endocrine cells and to cells lining the blood vessels of the pars distalis, to some presumed endocrine cells in the pars distalis and pars intermedia, and to clusters of cells in the pars nervosa. In contrast, IGF-I and IGF-II peptides were detected in the presumed endocrine cells in the pars distalis and pars intermedia but not in the pars nervosa. Incubation of adenohypophysial cells from term fetuses with IGF-I, but not IGF-II, for 48 h increased specific 125I-Tyr-ovine CRH binding. However, neither IGF-I nor IGF-II had any significant effects on the basal or CRH-stimulated immunoreactive (ir)-ACTH output, the level of POMC mRNA or the number of ir-ACTH positive cells. Infusion of cortisol to fetuses starting at day 96 of gestation for 100 h or at days 120–125 of gestation for 84 h did not affect the level of IGF-II mRNAs in the pars distalis but decreased the levels of POMC mRNA.

These results are consistent with IGFs having the potential to influence fetal pituitary function, although probably on cell types other than the corticotrophs. The likely sources of IGFs may be predominantly local (IGF-II) or from extrapituitary sources (IGF-I).

Free access

FM Rogerson, J Courtemanche, A Fleury, Head JR, JG LeHoux, and JI Mason

Western blot analyses of various hamster tissues reveal high levels of expression of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) in adrenal and liver, and moderate levels of expression in kidney. The expression in liver is sexually dimorphic; very high levels of protein are observed in adult male liver but very low levels are seen in the female liver. Three distinct cDNAs encoding isoforms of 3 beta-HSD were isolated from hamster cDNA libraries. The type 1 isoform is a high-affinity dehydrogenase/isomerase expressed in adrenal and male kidney. The type 2 isoform is also a high-affinity dehydrogenase/isomerase expressed in kidney and male liver. The type 3 enzyme is a 3-ketosteroid reductase expressed predominantly in kidney. Sequencing of the clones showed that all three are structurally very similar, although types 1 and 2 share the greatest degree of similarity. Immunohistochemical staining for 3 beta-HSD in the adrenal was found throughout the adrenal cortex. In the kidney staining was confined to tubules, and in the liver, heavy staining was found in hepatocytes. The cloning of cDNAs for 3 beta-HSD from the liver and kidney should help in elucidating the function of this enzyme in these tissues.

Free access

Enzo Lalli

Steroidogenic factor-1 (SF-1/Ad4-binding protein; NR5A1) is an essential regulator of tissue-specific gene expression in steroidogenic cells and of adrenogonadal development. Here, I discuss recent data in the literature showing the implication of SF-1 and the importance of its dosage not only during development but also for adrenal cortex tumorigenesis in humans and mice.