Search Results

You are looking at 71 - 80 of 292 items for

  • Abstract: Schlerostin x
  • Abstract: Vitamin D x
  • Abstract: Calcium x
  • Abstract: Mineral x
  • Abstract: Skeletal x
  • Abstract: Osteo* x
  • Abstract: Wnt x
  • Abstract: Growth Plate x
  • Abstract: Bone x
  • All content x
Clear All Modify Search
Free access

M Hewison, D Zehnder, R Bland, and PM Stewart

The active form of vitamin D, 1,25-dihydroxvitamin D(3) (1, 25(OH)(2)D(3)), is a pleiotropic hormone whose actions include the regulation of calcium homeostasis, control of bone cell differentiation and modification of immune responses. Synthesis of 1, 25(OH)(2)D(3) from the major circulating metabolite, 25-hydroxyvitamin D(3) (25(OH)D(3)), is catalysed by a mitochondrial cytochrome P450 enzyme, 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-OHase). Although 1alpha-OHase is expressed predominantly in the kidney, extra-renal production of 1,25(OH)(2)D(3) has also been demonstrated in tissues such as lymph nodes and skin. The tight regulation of 1alpha-OHase which occurs in both renal and peripheral tissues has made studies of the expression and regulation of this enzyme remarkably difficult. However, the recent cloning of mouse, rat and human cDNAs for 1alpha-OHase (CYP1alpha/Cyp1alpha) has enabled a more thorough characterization of this enzyme. In particular, analysis of the CYP1alpha gene has identified mutations causing the inherited disorder vitamin D-dependent rickets type 1, also known as pseudo-vitamin D deficiency rickets. Studies from our own group have focused on the distribution of 1alpha-OHase in both renal and extra-renal tissues. Data indicate that the enzyme is expressed throughout the nephron, suggesting discrete endocrine and paracrine/autocrine functions. Further immunohistochemical analyses have shown that the enzyme is widely distributed in extra-renal tissues, and this appears to be due to the same gene product as the kidney. Collectively, these observations have raised important new questions concerning the role of 1alpha-OHase in vitamin D signalling at a local level. The relationship between expression of protein for 1alpha-OHase and enzyme activity has yet to be fully characterized and may be dependent on membrane proteins such as megalin. Similarly, elucidation of the mechanisms involved in differential regulation of renal and extra-renal 1,25(OH)(2)D(3) production will be essential to our understanding of the tissue-specific functions of 1alpha-OHase. These and other issues are discussed in the current review.

Free access

Shulin Zhang, Melinda Chan, and Jane E Aubin

The steroid hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits osteogenesis while stimulating adipogenesis in vitro. We hypothesized that 1,25(OH)2D3 redirects the fate of osteoblast/adipocyte bipotential progenitors and other potential progenitors towards adipogenesis, a process possibly underlying the pathogenesis of osteopenic diseases such as osteoporosis. We therefore tested the global effects of 1,25(OH)2D3 on the recruitment of mesenchymal progenitors including osteogenic, chondrogenic, adipogenic and myogenic lineages (colony forming cell (CFC)-osteoblast (CFC-O), CFC-chondrocyte (CFC-C), CFC-adipocyte (CFC-A), and CFC-myoblast (CFC-M) respectively) in rat calvaria (RC) cell populations using gene expression profiling of single cell-derived colonies. Based on expression of lineage specific transcripts, 86% of single cell-derived colonies in untreated cultures simultaneously co-expressed transcripts of two, three, or four of the mesenchymal lineages tested. The distribution of mesenchymal progenitors in 1,25(OH)2D3-treated cultures was significantly changed compared with the control group, i.e. CFC-O were reduced (from 6 to 0%) and CFC-O/A bipotential (0 to 8.2%), CFC-C (4 to 10.2%) and CFC-Fibroblast (CFC-F) (4 to 16%) were increased. 1,25(OH)2D3 did not affect the frequency of tri- or tetra-lineage colonies. Single lineage CFC-A colonies were not detected in either the control or 1,25(OH)2D3 treatment group under the conditions tested.Since the parietal bones used for cell isolation derive from neuroectoderm, we also analyzed for expression of the neural markers nestin and β3 tubulin in these colonies. Surprisingly, 90% (45 of 50) of the colonies in the control group expressed neural markers, a frequency not changed by 1,25(OH)2D3 treatment. The current studies demonstrate the global and developmental stage-specific effects of 1,25(OH)2D3 on mesenchymal lineage progenitors, and suggest that the effects of 1,25(OH)2D3 on osteogenesis and adipogenesis in RC populations are mediated, at least in part, by increased recruitment of CFC-O/A, but not CFC-A type precursors.

Free access

Sonia Ciarmatori, Daniela Kiepe, Anke Haarmann, Ulrike Huegel, and Burkhard Tönshoff

Since IGF-I is an important chondrocyte growth factor, we sought to examine the intracellular mechanisms by which it exerts two of its pivotal effects, stimulation of proliferation and differentiation. We used the mesenchymal chondrogenic cell line RCJ3.1C5.18, which progresses spontaneously to differentiated growth plate chondrocytes. This differentiation process could be enhanced by exogenous IGF-I. Pharmacological inhibition of the phosphatidylinositol-3 (PI-3) kinase by LY294002, mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK)1/2 by U0126, the protein kinase (PK) A pathway by H-89 or KT5720, and the PKC pathway by bisindolylmaleimide suppressed IGF-I-stimulated cell proliferation. In contrast, IGF-I-enhanced early cell differentiation, as assessed by collagen type II and aggrecan gene expression, was not affected by MAPK/ERK1/2 pathway inhibition, but significantly diminished by inhibition of the PI-3 kinase, the PKC and the PKA pathway. Moreover, terminal differentiation of chondrocytes in response to IGF-I, as assessed by gene expression of alkaline phosphatase, Indian hedgehog, and collagen type X, were only interrupted by PI-3 kinase pathway inhibition. In conclusion, IGF-I exerts its differential effect on chondrocyte proliferation vs differentiation through the use of at least four partially interacting intracellular signaling pathways, whose activity is temporarily regulated. When chondrocytes progress from proliferating cells to early and terminal differentiating cells, they progressively inactivate IGF-I-related intracellular signaling pathways. This mechanism might be essential for the complex and cell stage-specific anabolic action of IGF-I in the growth plate.

Restricted access

RL Garcia, M Sadighi, SM Francis, JM Suttie, and JS Fleming

Antlers are organs of bone which regenerate each year from the heads of male deer. In addition to bone, support tissues such as nerves also regenerate. Nerves must grow at up to 1 cm/day. The control of this rapid growth of nerves is unknown. We examined the relative expression of neurotrophin-3 (NT-3) mRNA in the different tissues of the growing antler tip and along the epidermal/dermal layer of the antler shaft of the red deer Cervus elaphus, using semi-quantitative reverse transcription-polymerase chain reaction. Expression in the tip was found to be highest in the epidermal/dermal layer and lowest in the cartilaginous layer in all developmental stages examined. These data correlate well with the density and pattern of innervation of these tissues. Along the epidermal/dermal layer of the antler shaft, expression was highest in the segments subjacent to the tip and lowest near the base, arguing for differences in the temporal expression of NT-3 in these segments. The expression of NT-3 in cells isolated from the different layers of 60-day antlers did not mirror that observed when whole tissues were used and may suggest regional specificity of NT-3 expression within antler tissues.

Free access

Inga K Johnsen and Felix Beuschlein

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β superfamily of ligands that impact on a multitude of biological processes including cell type specification, differentiation and organogenesis. Furthermore, a large body of evidence points towards important BMP-dependent mechanisms in tumorigenesis. In accordance with their diverse actions, BMPs have been demonstrated to serve as auto-, para- and endocrine modulators also in a number of hormonal systems. In this review, we highlight novel aspects of BMP-dependent regulatory networks that pertain to adrenal physiology and disease, which have been uncovered during recent years. These aspects include the role of BMP-dependent mechanism during adrenal development, modulating effects on catecholamine synthesis and steroidogenesis and dysregulation of BMP signalling in adrenal tumorigenesis. Furthermore, we summarize potential therapeutic approaches that are based on reconstitution of BMP signalling in adrenocortical tumour cells.

Free access

Kelly E Corcoran, Ashwani Malhotra, Carlos A Molina, and Pranela Rameshwar

The chemokine Stromal-derived factor-1α (SDF-1α) interacts with seven transmembrane (TM) G-protein-coupled receptor (GPR), CXCR4. SDF-1α is linked to inflammation, chemoattraction, cancer metastasis, and hematopoiesis. Tachykinin (Tac1) peptides bind seven transmembrane (TM), GPR and are involved in tumor promotion. SDF-1α regulates Tac1 expression in non-tumorigenic breast cells through a bimodal pattern with repression at high levels through nuclear factor-kappa B (NFκB) activation. This study focuses on the mechanism of activation at low SDF-1α in MCF12A non-tumorigenic breast cells. Reporter gene assays with the 5′ flanking region of Tac1 (exon 1 omitted) and co-transfection with the repressor of cAMP response element (CREB) (ICER), and transfection with the CRE sites mutated, verified critical roles for CRE sites in SDF-1α-mediated Tac1 activation. Western blots and functional assays with specific inhibitors indicated that SDF-1α phosphorylated CREB (P-CREB) via Gαi2-PI3K-protein kinase C (PKC)ζ-p38-extracellular signal-regulated kinase (ERK) and no evidence of cAMP–PKA pathway. This observation is different from previous studies that reported CREB-phosphorylated PKA pathway in the activation of Tac1 in bone marrow stromal cells. This suggests cell specificity in Tac1 expression. In conclusion, this study reports on a non-canonical pathway in Tac1 activation by SDF-1α. This finding is significant, since Tac1 is relevant to breast cancer metastasis, to bone marrow where stromal cells have a significant facilitating function.

Free access

Maxime A Tremblay, Raifish E Mendoza-Villarroel, Nicholas M Robert, Francis Bergeron, and Jacques J Tremblay

Insulin-like 3 (INSL3), a Leydig cell-specific hormone, is essential for testis descent during foetal life and bone metabolism in adults. Despite its essential roles in male reproductive and bone health, very little is known regarding its transcriptional regulation in Leydig cells. To date, few transcription factors have been shown to activate INSL3 promoter activity: the nuclear receptors AR, NUR77, COUP-TFII and SF1. To identify additional regulators, we have isolated and performed a detailed analysis of a 1.1 kb human INSL3 promoter fragment. Through 5′ progressive deletions and site-directed mutagenesis, we have mapped a 10 bp element responsible for about 80% of INSL3 promoter activity in Leydig cells. This element is identical to the CPE element of the placental-specific glycoprotein-5 (PSG5) promoter that is recognized by the developmental regulator Krüppel-like factor 6 (KLF6). Using PCR and western blotting, we found that KLF6 is expressed in several Leydig and Sertoli cell lines. Furthermore, immunohistochemistry on adult mouse testis revealed the presence of KLF6 in the nuclei of both Leydig and Sertoli cells. KLF6 binds to the 10 bp KLF element at −108 bp and activates the −1.1 kb human, but not the mouse, INSL3 promoter. KLF6-mediated activation of the human INSL3 promoter required an intact KLF element as well as Leydig/Sertoli-enriched factors because KLF6 did not stimulate the human INSL3 promoter activity in CV-1 fibroblast cells. Consistent with this, we found that KLF6 transcriptionally cooperates with NUR77 and SF1. Collectively, our results identify KLF6 as a regulator of human INSL3 transcription.

Free access

A Zung, M Phillip, SA Chalew, T Palese, AA Kowarski, and Z Zadik

Several studies have suggested that testosterone may have a direct, GH-independent effect on growth. In order to assess possible mechanism(s) whereby testosterone exerts its growth-promoting effect, we evaluated its effect on growth mediators of the GH-IGF-I axis, in both the liver and the epiphyseal growth plate (EGP). Testosterone was administered to peripubertal rats and the responses of mRNA of GH receptor, IGF-I, IGF-I receptor and IGF-binding proteins-1 and -3 (IGFBP-1 and IGFBP-3) as well as circulating IGF-I were evaluated in two time-related models: over 12 h after a single injection (short-term study) and 10 days after continuous administration (long-term study). Rats in the short-term study were castrated and were killed 1, 4, 6 and 12 h post injection. Rats in the long-term study were divided into two groups: castrated vs castrated and hypophysectomized, in order to assess the effect of testosterone in the presence and absence of GH. mRNA levels were determined by RNase protection assay, and serum IGF-I by RIA. Testosterone enhanced weight gain in the rats treated for 10 days, a change that was similar in the presence or absence of GH. This effect was relatively small, however, by comparison with the total weight gained without testosterone. Testosterone had no effect on hepatic IGF-I mRNA abundance but induced a reduction in circulating IGF-I levels, in both the short- and long-term study. Testosterone had no effect on hepatic GH receptor and IGFBP-3 mRNA levels but resulted in a transient, short-term elevation in IGFBP-1 mRNA levels that was maximal 4 h post injection.In the EGP, neither testosterone administration nor hypophysectomy had any effect on IGF-I and IGF-I receptor mRNA levels. However, testosterone increased GH receptor mRNA abundance after 10 days of continuous administration in hypophysectomized rats only.These data suggest that the effect of testosterone on growth (as assessed by weight gain) is small and is not mediated by changes in hepatic gene expression of IGF-I, IGF-I receptor, IGFBP-1, IGFBP-3 or circulating IGF-I. At the EGP, the testosterone effect on linear growth is not mediated through changes in mRNA abundance of IGF-I and IGF-I receptor. The small but significant elevation of GH receptor mRNA levels in hypophysectomized rats may suggest a testosterone-mediated augmentation of a GH effect at the target organ.

Free access

JG Lemmen, RJ Arends, AL van Boxtel, PT van der Saag, and B van der Burg

With the aim of developing an in vivo model that directly detects activation of estrogen receptors (ERs), transgenic mice carrying a luciferase reporter gene were generated. The luciferase reporter gene was under the control of three consensus estrogen-responsive elements (EREs) coupled to a minimal TATA-box, with or without flanking chick beta-globin insulators. By using this model in combination with the IVIS imaging system, in vivo ER activation was measured. Dose- and time-dependent luciferase activity was induced in various organs of adult transgenic male mice exposed to diethylstilbestrol (DES) (10-1000 micro g/kg) and 17beta-estradiol dipropionate (EP) (10-1000 micro g/kg), when luciferase activity was measured ex vivo. The highest (>10 000-fold) induction of luciferase was measured in bone and kidney 24 h after exposure to 1000 micro g/kg EP. Other highly responsive organs include liver, testis, pituitary, brain, prostate and colon, which show different activity profiles. This in vivo model for detecting estrogenic activity can be used to assess tissue-specific action of ER agonists and antagonists. These could include selective ER modulators and environmental estrogens. In combination with the IVIS imaging system, this in vivo model is a powerful tool for assessing the kinetics of gene activation by estrogenic compounds.

Free access

Endong Zhu, Juanjuan Zhang, Jie Zhou, Hairui Yuan, Wei Zhao, and Baoli Wang

miR-20a-5p has recently been identified to induce adipogenesis of established adipogenic cell lines in our previous study. However, its role and molecular mechanisms in the regulation of adipocyte lineage commitment of bone marrow-derived stromal cells (BMSCs) still need to be explored. In this report, we demonstrated the expression of miR-20a-5p was promoted gradually during adipogenic differentiation in BMSCs. We also confirmed that miR-20a-5p has a positive function in the adipogenic differentiation of BMSCs by gain-of-function study with overexpression lentivirus or synthetic mimics of miR-20a-5p, and loss-of-function study with sponge lentivirus or synthetic inhibitor of miR-20a-5p. Dual luciferase reporter assay, GFP repression assay and Western blotting suggested Kruppel-like factor 3 (Klf3) was a direct target of miR-20a-5p. Furthermore, siRNA-mediated silencing of Klf3 recapitulated the potentiation of adipogenesis induced by miR-20a-5p overexpression, whereas enhanced expression of Klf3 attenuated the effect of miR-20a-5p. As Klf3 was reported to play an inhibitory role in adipogenesis at the initial stage of differentiation, the findings we present here indicate that miR-20a-5p promotes adipocyte differentiation from BMSCs by targeting and negatively regulating Klf3 in the early phase during the procedure of adipogenesis.