In addition to the known four alternative first exons E11, E12, E13 and E14 of the rat prolactin receptor (PRL-R) gene, a novel first exon, E15, was identified by cDNA cloning of the 5′-end region of PRL-R mRNA in the rat liver. Genomic fragments containing E15 and its 5′- or 3′-flanking regions were also cloned from rat kidney genomic DNA. A sequence search for E15 revealed that E15 is located 49 kb upstream of exon 2 of the PRL-R gene in rat chromosome 2q16. RT-PCR analysis revealed that E15 was preferentially expressed in the liver, brain and kidney. Expression profiles of E12-, E13- and E15-PRL-R mRNAs in the liver of male and female rats at 5 days of age and those at 8 weeks of age were examined by RT-PCR. The levels of E12-PRL-R mRNA in the female rat increased remarkably in rats at 8 weeks of age compared with those at 5 days of age, and the levels of E15-PRL-R mRNA in the male rat decreased markedly at 8 weeks of age compared with those at 5 days of age. In the female rat, the levels of E12-PRL-R mRNA at 8 weeks of age decreased with ovariectomy performed at 4 weeks of age and recovered with the administration of β-oestradiol. On the contrary, the levels of E15-PRL-R mRNA increased with ovariectomy and decreased with the oestrogen treatment. In the male rat liver, the levels of E12-PRL-R mRNA at 8 weeks of age increased strikingly with castration performed at 4 weeks of age and became undetectable with the administration of testosterone. The levels of E15-PRL-R mRNA increased slightly with castration and were restored by testosterone treatment. Removal of gonadal tissues and sex steroid hormone treatment had no effect on the expression levels of E13-PRL-R mRNA in both female and male rat livers. These results indicated that the expression of the PRL-R gene in the liver is regulated by the differential effects of sex steroid hormones on the transcription of the multiple first exons including the novel one.
Search Results
You are looking at 1 - 6 of 6 items for
- Author: M Kobayashi x
- Refine by Access: Content accessible to me x
M Tanaka, M Suzuki, T Kawana, M Segawa, M Yoshikawa, M Mori, M Kobayashi, N Nakai, and T R Saito
S Miyagawa, A Suzuki, Y Katsu, M Kobayashi, M Goto, H Handa, H Watanabe, and T Iguchi
Developmental exposure to a synthetic estrogen, diethylstilbestrol (DES), induces carcinogenesis in human and laboratory animals. In mice, neonatal DES treatment induces persistent proliferation and keratinization of the vaginal epithelium, even in the absence of the ovaries, resulting in cancerous lesions later in life. To understand the mechanisms underlying this persistent cell proliferation and differentiation, we characterized the gene expression patterns in the neonatally DES-exposed mouse vagina using DNA microarray and real-time quantitative RT-PCR. We found that genes related to cellular signaling, which are candidates for mediating the persistent proliferation and differentiation, were altered, and genes related to the immune system were decreased in the neonatally DES-exposed mouse vagina. We also noted high expression of interleukin-1 (IL-1)-related genes accompanied by phosphorylation of JNK1. In addition, expression IGF-I and its binding proteins was modulated and led to phosphorylation of IGF-I receptor and Akt, which is one of the downstream factors of IGF-I signaling. This led us to characterize the expression as well as the phosphorylation status of IL-1 and IGF-I signaling pathway components which may activate the phosphorylation cascade in the vagina of mice exposed neonatally to DES. These findings give insight into persistent activation in the vagina of mice exposed neonatally to DES.
H Watanabe, E Takahashi, M Kobayashi, M Goto, A Krust, P Chambon, and T Iguchi
Recent studies have revealed that hundreds of genes in the uterus are activated by estrogen. Their expression profiles differ over time and doses and it is not clear whether all these genes are directly regulated by estrogen via the estrogen receptor. To select the genes that may be regulated by estrogen, we treated mice with several doses of estrogen and searched for those genes whose dose–response expression pattern mirrored the uterine growth pattern. Among those genes, we found that the dose-dependent expression of the adrenomedullin (ADM) gene correlated well with the uterotrophic effect of estrogen. ADM expression is induced early after estrogen administration and is restricted to the endometrial stroma. The spatiotemporal gene expression pattern of ADM was similar to that of receptor-modifying protein 3 (RAMP3). RAMP3 is known to modify calcitonin gene-related receptor (CRLR) so that it can then serve as an ADM receptor. Chromatin immunoprecipitation assays indicated that the estrogen receptor binds directly to the ADM promoter region and RAMP3 intron after estrogen administration. It was also shown that neither the ADM nor RAMP3 gene could be activated in estrogen receptor-α-null mouse. Although uterine ADM expression has been reported to occur in the myometrium, our observations indicate that estrogen-induced ADM is also expressed in the uterine stroma and that such variable, spatiotemporally regulated ADM expression contributes to a wider range of biological effects than previously expected.
H Watanabe, A Suzuki, M Kobayashi, E Takahashi, M Itamoto, DB Lubahn, H Handa, and T Iguchi
In order to understand early events caused by estrogen in vivo, temporal uterine gene expression profiles at early stages were examined using DNA microarray analysis. Ovariectomized mice were exposed to 17beta-estradiol and the temporal mRNA expression changes of ten thousand various genes were analyzed. Clustering analysis revealed that there are at least two phases of gene activation during the period up to six hours. One involved immediate-early genes, which included certain transcription factors and growth factors as well as oncogenes. The other involved early-late genes, which included genes related to RNA and protein synthesis. In clusters of down-regulated genes, transcription factors, proteases, apoptosis and cell cycle genes were found. These hormone-inducible genes were not induced in estrogen receptor (ER) alpha knockout mice. Although expression of ERbeta is known in the uterus, these findings indicate the importance of ERalpha in the changes in gene expression in the uterus.
H Watanabe, A Suzuki, M Kobayashi, DB Lubahn, H Handa, and T Iguchi
Administration of physiological and non-physiological estrogens during pregnancy or after birth is known to have adverse effects on the development of the reproductive tract and other organs. Although it is believed that both estrogens have similar effects on gene expression, this view has not been tested systematically. To compare the effects of physiological (estradiol; E2) and non-physiological (diethylstilbestrol; DES) estrogens, we used DNA microarray analysis to examine the uterine gene expression patterns induced by the two estrogens. Although E2 and DES induced many genes to respond in the same way, different groups of genes showed varying levels of maximal activities to each estrogen, resulting in different dose-response patterns. Thus, each estrogen has a distinct effect on uterine gene expression. The genes were classified into clusters according to their dose-responses to the two estrogens. Of the eight clusters, only two correlated well with the uterotropic effect of different doses of E2. One of these clusters contained genes that were upregulated by E2, which included genes encoding several stress proteins and transcription factors. The other cluster contained genes that were downregulated by E2, including genes related to metabolism, transcription and detoxification processes. The expression of these genes in estrogen receptor-deficient mice was not affected by E2 treatment, indicating that these genes are affected by the E2-bound estrogen receptor. Thus, of the many genes that are affected by estrogen, it was suggested that only a small number are directly involved in the uterotropic effects of estrogen treatment.
L Y Zhou, D S Wang, B Senthilkumaran, M Yoshikuni, Y Shibata, T Kobayashi, C C Sudhakumari, and Y Nagahama
In order to elucidate the roles of 17β-HSDs in fish gonadal steroidogenesis, three types of 17β-HSDs (17β-HSD1, 17β-HSD8 and putative 17β-HSD12) were cloned and characterized from the Nile tilapia, Oreochromis niloticus. The cloned cDNAs of 17β-HSD type 1, 8 and 12 were 1504, 1006 and 1930 bp long, with open reading frames encoding proteins of 289, 256 and 314 aminoacids, respectively. Tissue distribution pattern analyzed by RT-PCR and Northern blot showed that 17β-HSD1 was dominantly expressed in the ovary, while the putative 17β-HSD12, one of the two duplicates found in fish, is a male specific enzyme and expressed exclusively in testis (detected by RT-PCR only). On the other hand, 17β-HSD8 was expressed in the brain, gill, heart, liver, intestine, gonad, kidney and muscle of both male and female. Enzymatic assays of the three types of 17β-HSDs were performed using recombinant proteins expressed in E. coli or HEK 293 cells. Tilapia 17β-HSD1 expressed in E. coli had the preference for NADP(H) as cofactor and could catalyze the inter-conversion between estrone and estradiol efficiently as well as the inter-conversion between androstenedione and testosterone, but less efficiently. Tilapia 17β-HSD8 recombinant protein expressed in HEK 293 cells could catalyze the conversion of testosterone to androstenedione, as well as the inter-conversion between estrone and estradiol. However, the putative 17β-HSD12 expressed in E. coli or in HEK 293 cells showed no conversion to any of the four substrates tested in this study. Based on enzyme characterization and tissue distribution, it is plausible to attribute crucial roles to 17β-HSDs in the gonadal steroidogenesis of teleosts.