Search Results

You are looking at 1 - 3 of 3 items for

  • Abstract: Chemicals* x
  • Abstract: Pollutants x
  • Abstract: Plastics x
  • Abstract: Pesticides x
  • Abstract: BPA x
  • Abstract: Phthalates x
  • Abstract: POPs x
  • Abstract: Additives x
  • Abstract: Xenoestrogens x
  • Abstract: Parabens x
  • Abstract: disrupting x
  • Open access x
Clear All Modify Search
Open access

Marc Simard, Caroline Underhill and Geoffrey L Hammond

Corticosteroid-binding globulin (CBG) is a plasma carrier of glucocorticoids. Human and rat CBGs have six N-glycosylation sites. Glycosylation of human CBG influences its steroid-binding activity, and there are N-glycosylation sites in the reactive center loops (RCLs) of human and rat CBGs. Proteolysis of the RCL of human CBG causes a structural change that disrupts steroid binding. We now show that mutations of conserved N-glycosylation sites at N238 in human CBG and N230 in rat CBG disrupt steroid binding. Inhibiting glycosylation by tunicamycin also markedly reduced human and rat CBG steroid-binding activities. Deglycosylation of fully glycosylated human CBG or human CBG with only one N-glycan at N238 with Endo H-reduced steroid-binding affinity, while PNGase F-mediated deglycosylation does not, indicating that steroid binding is preserved by deamidation of N238 when its N-glycan is removed. When expressed in N-acetylglucosaminyltransferase-I-deficient Lec1 cells, human and rat CBGs, and a human CBG mutant with only one glycosylation site at N238, have higher (2–4 fold) steroid-binding affinities than when produced by sialylation-deficient Lec2 cells or glycosylation-competent CHO-S cells. Thus, the presence and composition of an N-glycan in this conserved position both appear to influence the steroid binding of CBG. We also demonstrate that neutrophil elastase cleaves the RCL of human CBG and reduces its steroid-binding capacity more efficiently than does chymotrypsin or the Pseudomonas aeruginosa protease LasB. Moreover, while glycosylation of N347 in the RCL limits these activities, N-glycans at other sites also appear to protect CBG from neutrophil elastase or chymotrypsin.

Open access

Zhi Zhang, Fang Wang, Bing-jian Wang, Guang Chu, Qunan Cao, Bao-Gui Sun and Qiu-Yan Dai

Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3.

Open access

S Das, I Sepahi, A Duthie, S Clark and J C Crockett

The interaction of receptor activator of NFκB (RANK), a member of the tumour necrosis factor receptor superfamily, with RANK ligand is crucial for the formation, function and survival of osteoclasts. The role of the cytoplasmic oligomerisation domain (pre-ligand assembly domain; PLAD or ‘IVVY’ motif) in the ligand-dependent activation of downstream NFκB signalling has not been studied previously. The discovery of truncating mutations of TNFRSF11A (W434X and G280X that lack the PLAD) as the cause of rare cases of osteoclast-poor osteopetrosis offered the opportunity for functional study of this region. Recapitulating the W434X mutation by transcription activator-like effector nuclease (TALEN)-mediated targeted disruption of Tnfrsf11a within the region homologous to W434X in the mouse macrophage-like cell line RAW264.7 impaired formation of osteoclast-like cells. Using overexpression studies, we demonstrated that, in contrast to WT-RANK, the absence of the PLAD in G280X-RANK and W434X-RANK prevented ligand-independent but not ligand-dependent oligomerisation. Cells expressing W434X-RANK, in which only two of the three TRAF6-binding motifs are present, continued to exhibit ligand-dependent NFκB signalling. Hence, the absence of the PLAD did not prevent ligand-induced trimerisation and subsequent NFκB activation of RANK, demonstrating that therapeutic targeting of the PLAD in the prevention of osteoporosis may not be as effective as proposed previously.