Search Results

You are looking at 1 - 10 of 35 items for

  • Abstract: Adipose x
  • Abstract: Obese x
  • Abstract: Fat x
  • Abstract: Metabo* x
  • Abstract: Energy x
  • Abstract: Diabetes x
  • Abstract: Leptin x
  • Abstract: Angiotensin x
  • Abstract: AT1 x
  • Abstract: Adipocyte x
  • Abstract: Adipogenesis x
  • Open access x
Clear All Modify Search
Open access

Rihua Zhang, Dongming Su, Weidong Zhu, Qiong Huang, Menglan Liu, Yi Xue, Yuanyuan Zhang, Dong li, Allan Zhao, and Yun Liu

The aim of this study is to determine the effects of E2 on metabolic syndrome and the molecular mechanisms involving S100A16. Ovariectomized (OVX) rat models and mouse embryonic fibroblasts cell models were used. E2 loss in OVX rats induced body weight gain and central abdominal fat accumulation, which were ameliorated by E2 treatment under chow and high-fat diet (HFD) conditions. E2 decreased the expression of the adipocyte marker genes PPAR γ, aP2, C/EBP α, and S100A16. E2 inhibited adipogenesis. Overexpression of S100A16 reversed the E2-induced adipogenesis effect. A luciferase assay showed that E2 inhibited the expression of S100A16. E2 treatment decreased body weight gain and central abdominal fat accumulation under both chow and HFD conditions. Also, E2 suppressed adipogenesis by inhibiting S100A16 expression.

Open access

Seema Kumar, Sarah Nadeem, Marius N Stan, Michael Coenen, and Rebecca S Bahn

Graves' ophthalmopathy (GO) is characterized by expanded volume of the orbital tissues associated with elevated serum levels of TSH receptor (TSHR) autoantibodies. Because previous studies have demonstrated evidence of adipogenesis within the GO orbit, we sought to determine whether M22, a human monoclonal antibody directed against TSHR, enhances adipogenesis in orbital fibroblasts from patients with GO and, if so, to identify signaling mechanisms involved. GO orbital fibroblast cultures (n=10) were treated for 10 days with bovine TSH (1 or 10.0 U/l) or M22 (1 or 10 ng/ml) in serum-free adipocyte differentiation medium. Some cultures also received a phosphoinositide 3-kinase (PI3K) inhibitor or an inhibitor of cAMP production. In other experiments, confluent cultures (n=8) were treated for between 1 and 30 min with TSH (0.1–10.0 U/l) or M22 (0.1–100 ng/ml) with measurement of cAMP production or levels of phosphorylated AKT (pAKT). We found levels of adiponectin, leptin, and TSHR mRNA to be increased in GO cultures treated for 10 days with either M22 (2.6 mean fold ±0.7; P=0.03) or TSH (13.2±5.8-fold, P=0.048). In other studies, M22 and TSH stimulated cAMP production and pAKT levels in GO cells. Inhibition of PI3K activity during 10 days in culture decreased the levels of M22-stimulated mRNA encoding adiponectin (67±12%; P=0.021), as well as adiponectin and CCAAT/enhancer-binding protein α protein levels. In conclusion, M22 is a pro-adipogenic factor in GO orbital preadipocytes. This antibody appears to act via the PI3K signaling cascade, suggesting that inhibition of PI3K signaling may represent a potential novel therapeutic approach in GO.

Open access

Jun Zhou, Qilong Wang, Ye Ding, and Ming-Hui Zou

We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH2-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes.

Open access

Cristina L Esteves, Val Kelly, Valérie Bégay, Simon G Lillico, Achim Leutz, Jonathan R Seckl, and Karen E Chapman

Murine 3T3-L1 adipocytes are widely used as a cellular model of obesity. However, whereas transfection of 3T3-L1 preadipocytes is straightforward, ectopic gene expression in mature 3T3-L1 adipocytes has proved challenging. Here, we used the pSLIK vector system to generate stable doxycycline-inducible expression of the liver-enriched inhibitor protein isoform of CCAAT/enhancer binding protein β (CEPB (C/EBPβ-LIP)) in fully differentiated 3T3-L1 adipocytes. Because overexpression of C/EBPβ-LIP impairs adipocyte differentiation, the C/EBPβ-LIP construct was first integrated in 3T3-L1 preadipocytes but expression was induced only when adipocytes were fully differentiated. Increased C/EBPβ-LIP in mature adipocytes down-regulated C/EBPβ target genes including 11β-hydroxysteroid dehydrogenase type 1, phosphoenolpyruvate carboxykinase and fatty acid binding protein 4 but had no effect on asparagine synthetase, demonstrating that transcriptional down-regulation by C/EBPβ-LIP in 3T3-L1 adipocytes is not a general effect. Importantly, these genes were modulated in a similar manner in adipose tissue of mice with genetically increased C/EBPβ-LIP levels. The use of the pSLIK system to conditionally express transgenes in 3T3-L1 cells could be a valuable tool to dissect adipocyte physiology.

Open access

Lingyun Zhang, Takashi Sugiyama, Nao Murabayashi, Takashi Umekawa, Ning Ma, Yuki Kamimoto, Yoshihiro Ogawa, and Norimasa Sagawa

The infiltration of classically activated macrophages (M1) and alternatively activated macrophages (M2) in subcutaneous adipose tissue (SAT) and parametrial adipose tissue (PAT) was analyzed to investigate whether local inflammatory change in adipose tissue occurs in late pregnancy. C57B L /6N female mice at 6 weeks of age were fed a normal chow diet for 4 weeks prior to mating at 10 weeks of age and were sampled on day 17 of pregnancy. The serum levels of adipokines and biochemical markers were measured using ELISA and enzymatic methods. The identification of M1 and M2 was analyzed by double immunofluorescence with anti-F4/80 and anti-CD11c antibodies. The gene expression of adipokines in adipose tissues was analyzed by quantitative RT-PCR. The pregnant group showed adipocyte hypertrophy, higher macrophage infiltration, and higher M1/M2 in both SAT and PAT compared with the non-pregnant (NP) group. Serum levels of free fatty acids, tumor necrosis factor α (TNFα), interleukin 6 (IL6), and IL10 were higher, and serum levels of adiponectin were lower in the pregnant group than those in the NP group. The gene expressions of CD68, Itgax, CCR2, TNF α, and PAI1 in SAT during pregnancy were significantly higher than those in the NP group, as were the gene expressions of CD68, Emrl, Itgax, MCP1, TNF α , IL6, PAI1, adiponectin, and IL10 in PAT. These results suggest that the low-grade inflammation of adipose tissue indicated by increased macrophage infiltration occurs in late normal pregnancy.

Open access

Irina G Bogdarina, Peter J King, and Adrian J L Clark

Angiotensin II acts through two pharmacologically distinct receptors known as AT1 and AT2. Duplication of the AT1 receptor in rodents into At1a and b subtypes allows tissue-specific expression of the AT1b in adrenal and pituitary tissue. Adrenal expression of this receptor is increased in the offspring of rat mothers exposed to a low-protein diet and this is associated with the undermethylation of its promoter. This phenomenon is blocked by the inhibition of maternal glucocorticoid synthesis by metyrapone. We have mapped the transcriptional start site of the promoter and demonstrated that a 1.2 kbp fragment upsteam of this site is effective in driving luciferase expression in mouse Y1 cells. A combination of bioinformatic analysis, electrophoretic mobility shift analysis (EMSA), and mutagenesis studies demonstrates: i) the presence of a putative TATA box and CAAT box; ii) the presence of three Sp1 response elements, capable of binding SP1; mutation of any pair of these sites effectively disables this promoter; iii) the presence of four potential glucocorticoid response elements which each bind glucocorticoid receptor in EMSA, although only two confer dexamethasone inhibition on the promoter; iv) the presence of two AP1 sites. Mutagenesis of the distal AP1 site greatly diminishes promoter function but this is also associated with the loss of dexamethasone inhibition. These studies will facilitate an understanding of the mechanisms by which fetal programming leads to long term alterations in gene expression and the development of adult disease.

Open access

Jian-Hua Chen, Maria Segni, Felicity Payne, Isabel Huang-Doran, Alison Sleigh, Claire Adams, UK10K Consortium, David B Savage, Stephen O'Rahilly, Robert K Semple, and Inês Barroso

We describe a female proband with primordial dwarfism, skeletal dysplasia, facial dysmorphism, extreme dyslipidaemic insulin resistance and fatty liver associated with a novel homozygous frameshift mutation in POC1A, predicted to affect two of the three protein products of the gene. POC1A encodes a protein associated with centrioles throughout the cell cycle and implicated in both mitotic spindle and primary ciliary function. Three homozygous mutations affecting all isoforms of POC1A have recently been implicated in a similar syndrome of primordial dwarfism, although no detailed metabolic phenotypes were described. Primary cells from the proband we describe exhibited increased centrosome amplification and multipolar spindle formation during mitosis, but showed normal DNA content, arguing against mitotic skipping, cleavage failure or cell fusion. Despite evidence of increased DNA damage in cells with supernumerary centrosomes, no aneuploidy was detected. Extensive centrosome clustering both at mitotic spindles and in primary cilia mitigated the consequences of centrosome amplification, and primary ciliary formation was normal. Although further metabolic studies of patients with POC1A mutations are warranted, we suggest that POC1A may be added to ALMS1 and PCNT as examples of centrosomal or pericentriolar proteins whose dysfunction leads to extreme dyslipidaemic insulin resistance. Further investigation of links between these molecular defects and adipose tissue dysfunction is likely to yield insights into mechanisms of adipose tissue maintenance and regeneration that are critical to metabolic health.

Open access

Ross S Thomas, Naveed Sarwar, Fladia Phoenix, R Charles Coombes, and Simak Ali

Phosphorylation of estrogen receptor-α (ERα) at specific residues in transcription activation function 1 (AF-1) can stimulate ERα activity in a ligand-independent manner. This has led to the proposal that AF-1 phosphorylation and the consequent increase in ERα activity could contribute to resistance to endocrine therapies in breast cancer patients. Previous studies have shown that serine 118 (S118) in AF-1 is phosphorylated by extracellular signal-regulated kinases 1 and 2 (Erk1/2) mitogen-activated protein kinase (MAPK) in a ligand-independent manner. Here, we show that serines 104 (S104) and 106 (S106) are also phosphorylated by MAPK in vitro and upon stimulation of MAPK activity in vivo. Phosphorylation of S104 and S106 can be inhibited by the MAP-erk kinase (MEK)1/2 inhibitor U0126 and by expression of kinase-dead Raf1. Further, we show that, although S118 is important for the stimulation of ERα activity by the selective ER modulator 4-hydroxytamoxifen (OHT), S104 and S106 are also required for the agonist activity of OHT. Acidic amino acid substitution of S104 or S106 stimulates ERα activity to a greater extent than the equivalent substitution at S118, suggesting that phosphorylation at S104 and S106 is important for ERα activity. Collectively, these data indicate that the MAPK stimulation of ERα activity involves the phosphorylation not only of S118 but also of S104 and S106, and that MAPK-mediated hyperphosphorylation of ERα at these sites may contribute to resistance to tamoxifen in breast cancer.

Open access

M H Abel, D Baban, S Lee, H M Charlton, and P J O'Shaughnessy

FSH acts through the Sertoli cell to ensure normal testicular development and function. To identify transcriptional mechanisms through which FSH acts in the testis, we have treated gonadotrophin-deficient hypogonadal (hpg) mice with recombinant FSH and measured changes in testicular transcript levels using microarrays and real-time PCR 12, 24 and 72 h after the start of treatment. Approximately 400 transcripts were significantly altered at each time point by FSH treatment. At 12 h, there was a clear increase in the levels of a number of known Sertoli cell transcripts (e.g. Fabp5, Lgals1, Tesc, Scara5, Aqp5). Additionally, levels of Leydig cell transcripts were also markedly increased (e.g. Ren1, Cyp17a1, Akr1b7, Star, Nr4a1). This was associated with a small but significant rise in testosterone at 24 and 72 h. At 24 h, androgen-dependent Sertoli cell transcripts were up-regulated (e.g. Rhox5, Drd4, Spinlw1, Tubb3 and Tsx) and this trend continued up to 72 h. By contrast with the somatic cells, only five germ cell transcripts (Dkkl1, Hdc, Pou5f1, Zfp541 and 1700021K02Rik) were altered by FSH within the time-course of the experiment. Analysis of canonical pathways showed that FSH induced a general decline in transcripts related to formation and regulation of tight junctions. Results show that FSH acts directly and indirectly to induce rapid changes in Sertoli cell and Leydig cell transcript levels in the hpg mouse but that effects on germ cell development must occur over a longer time-span.

Open access

Indrajit Chowdhury, Kelwyn Thomas, Anthony Zeleznik, and Winston E Thompson

Published results from our laboratory identified prohibitin (PHB), a gene product expressed in granulosa cells (GCs) that progressively increases during follicle maturation. Our current in vitro studies demonstrate that follicle-stimulating hormone (FSH) stimulates Phb expression in rat primary GCs. The FSH-dependent expression of PHB was primarily localized within mitochondria, and positively correlates with the morphological changes in GCs organelles, and synthesis and secretions of estradiol (E2) and progesterone (P4). In order to confirm that PHB plays a regulatory role in rat GC differentiation, endogenous PHB-knockdown studies were carried out in undifferentiated GCs using adenoviral (Ad)-mediated RNA interference methodology. Knockdown of PHB in GCs resulted in the suppression of the key steroidogenic enzymes including steroidogenic acute regulatory protein (StAR), p450 cholesterol side-chain cleavage enzyme (p450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and aromatase (Cyp19a1); and decreased E2 and P4 synthesis and secretions in the presence of FSH stimulation. Furthermore, these experimental studies also provided direct evidence that PHB within the mitochondrial fraction in GCs is phosphorylated at residues Y249, T258, and Y259 in response to FSH stimulation. The observed levels of phosphorylation of PHB at Y249, T258, and Y259 were significantly low in GCs in the absence of FSH stimulation. In addition, during GC differentiation FSH-induced expression of phospho-PHB (pPHB) requires the activation of MEK1-ERK1/2 signaling pathway. Taken together, these studies provide new evidence supporting FSH-dependent PHB/pPHB upregulation in GCs is required to sustain the differentiated state of GCs.