Thyroid hormones are pleiotropic factors important for many developmental and physiological functions in vertebrates. Their effects are mediated by two specific receptors (TRalpha and TRbeta) which are members of the nuclear hormone receptor superfamily. To clarify the function of these receptors, our laboratory has started a comparative study of their role in teleost fish. This type of approach has been hampered by the isolation of specific clones for each fish species studied. In this report, we describe an efficient reverse transcription/PCR procedure that allows the isolation of large fragments corresponding to TRalpha and TRbeta of a wide range of teleost fish. Phylogenetic analysis of these receptors revealed a placement consistent with their origin, sequences from teleost fish being clearly monophyletic for both TRalpha and TRbeta. Interestingly, this approach allowed us to isolate (from tilapia and salmon) several new TRalpha or TRbeta isoforms resulting from alternative splicing. These isoforms correspond to expressed transcripts and thus may have an important physiological function. In addition, we isolated a cDNA encoding TRbeta in the Atlantic salmon (Salmo salar) encoding a functional thyroid hormone receptor which binds specific thyroid hormone response elements and regulates transcription in response to thyroid hormones.
Search Results
O Marchand, R Safi, H Escriva, E Van Rompaey, P Prunet, and V Laudet
S Palmero, P De Marco, and E Fugassa
ABSTRACT
A polymerase chain reaction (PCR)-based assay was used to evaluate the expression of thyroid hormone receptor β mRNA in Sertoli cells isolated from both prepubertal rat and piglet testes. The expression of an mRNA coding for the functional thyroid hormone receptor β isoform, as established by the PCR assay, agrees with the presence of specific tri-iodothyronine (T3)-binding sites in the Sertoli cell nuclei of both species, as previously evaluated by displacement analysis. The results ratify the existence of a functional T3 receptor in the prepubertal testis and confirm the Sertoli cell as a specific target for thyroid hormone action on the developing testis. On the other hand, in both peripubertal rat (Palmero et al. 1988; Jannini et al. 1990) and piglet (Palmero et al. 1992) testes, high-affinity, low-capacity T3 binding sites have been specifically localised at the Sertoli cell level and TRal mRNA expression has been detected very recently in immature Sertoli cells (Jannini et al. 1994).
The aim of the present work was to test if, in prepubertal Sertoli cells isolated from both immature rat and piglet testes, the expression of an erbAβ mRNA specifically coding for the TR protein could be detected employing an highly sensitive polymerase chain reaction (PCR)-based assay.
V Tassi, L Scarnecchia, A Di Cerbo, M T Pirro, R Di Paola, A Liuzzi, M Torlontano, M Zingrillo, L D’Aloiso, and V De Filippis
ABSTRACT
Autoimmune thyroid diseases (AITDs) are clustered in families, but the nature of this clustering is still poorly understood. One possible approach to the identification of genetic factors interacting with the AITDs is the study of the association between polymorphic markers and AITDs themselves. In the present study we have shown an association between an allele of a HindIII restriction fragment length polymorphism (EAβH) intragenic to c-erbAβ, which codes for the thyroid hormone β receptor, and Graves’ disease. This polymorphism can be detected by PCR followed by digestion with the restriction enzyme HindIII. The allelic frequencies were analysed in a panel of DNAs extracted from a population of individuals affected by thyroid disease and originating from southern Italy. A control group (n=120) from the same area was also analysed. The distribution of EAβH alleles was significantly different (P<0·001) in Graves’ disease (n=94) but not in autoimmune thyroiditis (n=60), as compared with controls. Also the distribution of the EAβH genotypes was significantly different in Graves’ patients (P=0·003), as compared with controls, the homozygous state EAβH+/EAβH+ being more frequent in Graves’ patients than in all the other groups. We did not find any association between EAβH genotypes and clinical parameters in Graves’ patients, including eye signs, thyroid volume and level of TSH-binding inhibiting immunoglobulins. Our data support the idea that Graves’ disease is a genetically distinct group within the AITDs.
T. S. Tiong, J. L. Stevenson, and A. C. Herington
ABSTRACT
The nature and tissue distribution of prolactin receptor (PRL-R) mRNA in both male and female rats was studied. A single mRNA species of 2.2kb was identified in the liver, kidney, adrenal, prostate, lactating mammary gland and ovary but not in the male lung, heart, skeletal muscle, thymus, adipose tissue or brain. There were distinct and contrasting sex differences in abundance of PRL-R mRNA in some tissues: liver (female>>male), kidney and adrenal (male >>female). A mRNA species of 4kb was occasionally detected in the male adrenal and female liver. Given previous reports on the effects of thyroid status on PRL binding, the effects of thyroxine (T4), propylthiouracil (PTU) or combined treatment on PRL-R mRNA were assessed. In the male rat, PTU treatment markedly increased (three- to fourfold) PRL-R mRNA in the liver but decreased it (∼50%) in the kidney. These changes were reflected in similar changes in lactogenic binding activity. T4 or PTU treatment increased PRL-R mRNA in the prostate, with no obvious changes in binding. No major changes were seen in adrenal glands. In the female rat, PTU had little effect on PRL-R mRNA in any tissue, although binding of 125I-labelled lactogen was decreased in both the liver and kidney. There was an unexpected threefold rise in PRL-R mRNA in the female kidney following combined T4 and PTU treatment. Overall, there was a quite close correlation between the effects of thyroid status on PRL-R mRNA levels and specific lactogenic binding to membranes prepared from the same tissue samples. These studies provide data on the tissue distribution and size of PRL-R mRNA in rats and suggest a novel and complex tissue- and sex-dependent regulation by thyroid hormone.
L B Nicholson, H Vlase, P Graves, M Nilsson, J Molne, G C Huang, N G Morgenthaler, T F Davies, A M McGregor, and J P Banga
ABSTRACT
We have characterized four murine monoclonal antibodies (mAbs) to the extracellular domain of the human TSH receptor (TSH-R.E), the target autoantigen of Graves' disease. Recombinant TSH-R.E used as immunogen, was produced in E. coli as a fusion protein with glutathione-S-transferase or in a baculovirus-insect cell system, as a non-fusion glycoprotein. To increase the epitope specificity of the mAbs, two different strains of mice (H-2b and H-2d) were immunized. The epitopes recognized by the mAbs were characterized by immunoblotting with various recombinant constructs of TSH-R.E and by binding to overlapping synthetic peptides of the receptor. The four IgG mAbs characterized recognized epitopes localized to different regions on the TSH-R.E; amino acids 22–35 (A10 and All, both IgG2b from H-2b animals), amino acids 402–415 (A7, IgG2b from H-2b animals) and amino acids 147–228 (A9, IgG1 from H-2d animals). Immunolocalization studies showed that mAb A9 recognized TSH-R.E on unfixed cryostat sections, where binding was localized to the basolateral plasma membrane of thyroid follicular cells, suggesting that this antibody reacts with the native receptor on thyroid cells. The binding of the mAbs A7, A10 and All was also restricted to the basal surface of thyroid cells, but only after acetone fixation of the sections, implying that the epitopes recognized on the amino and carboxyl terminus of the extracellular region of the receptor are not accessible on the native molecule. None of the mAbs stimulated cyclic AMP responses in COS-7 cells transiently transfected with full-length functioning TSH-R.E, whilst weak inhibition of binding of radiolabelled TSH to porcine membranes in a radioreceptor assay was apparent with mAb A10 and All, but only at high concentrations of IgG. The ability of mAb A9 to bind to the native receptor without stimulating activity or inhibition of TSH binding suggests that antibody can bind to the central region of the TSH-R.E without perturbing receptor function. The availability of mAbs that recognize epitopes on different regions of the extracellular domain of TSH-R will lead to a better understanding of the autoantigenic regions on TSH-R implicated in disease activity.
L Laflamme, G Hamann, N Messier, S Maltais, and Langlois M-F
Thyroid hormone receptors (TRs) often modulate transcriptional activity of target genes by heterodimerization with the 9-cis retinoic acid receptor (RXR). On positive thyroid response elements (TREs), RXR favors binding of the TR-RXR complex to DNA and stimulates transcription. RXR action on negative TREs is unclear. Furthermore, the single half-site configuration of many negative TREs does not favor the binding of a classic TR-RXR heterodimer. In a comparative study using CV-1 cells (relatively RXR- and TR-deficient) and JEG-3 cells (relatively TR-deficient), we demonstrate the importance of RXR in the negative transcriptional regulation of genes of the hypothalamo-pituitary axis by tri-iodothyronine. While RXR has variable effects on ligand-independent activation produced by TRs, it was required for efficient ligand-dependent repression of the TRH gene for TRalpha1 and TRbeta1 and of the TSH genes by all TRs. Using different RXR constructs we also observed the importance of the C-terminus of RXR but not of the N-terminus nor the DNA-binding domain, in the potentiation of negative regulation. We thus suggest that, with regard to negative regulation of the TRH and TSH genes by thyroid hormones, RXR behaves more like a cofactor than a classic heterodimerization partner.
J. W. Barlow, L. E. Raggatt, C. C. Drinkwater, I. G. Lyons, and R. I. Richards
ABSTRACT
We have used a DNA-cellulose competition assay to investigate the binding of thyroid hormone receptors to fragments of the mouse glandular kallikrein genes and the human and rat GH genes. Nuclear extracts from human lymphoblastoid IM-9 cells were incubated with [125I]tri-iodothyronine ([125I]T3) and DNA-cellulose. The ability of cloned gene fragments to compete for radiolabelled receptors bound to DNA-cellulose was compared with that of DNA from pBR322. As previously observed, a 900 bp fragment from the human GH gene showed preferential binding to the thyroid hormone receptor. High-affinity binding was observed with a synthetic fragment of the rat GH gene encompassing positions − 163 to − 192 but not with a similar fragment from positions −224 to −192. Preferential binding was also observed with fragments of the mouse glandular kallikrein gene, mGK-6. Binding to the entire gene and fragments containing 2300 and 776 bp of the promoter region was identical. Detectable but reduced binding was seen with a shorter fragment. These results suggest that the T3 receptor binds to multiple sites within the first 776 bp of the mGK-6 gene promoter. Potential thyroid hormone response elements can be identified within this region of the gene. In contrast, the kallikrein gene mGK-3, which shows a different response to thyroid hormone from that of mGK-6, showed no significant binding in the comparable promoter region.
KJ Starkey, A Janezic, G Jones, N Jordan, G Baker, and M Ludgate
The thyrotrophin receptor (TSHR) provides an autoantigenic link between the thyroid and orbit in Graves' (GD) and thyroid eye diseases (TED). We measured TSHR transcripts in different fat depots to determine whether TSHR expression levels are influenced by the autoimmune/inflammatory process and/or thyroid hormone status, using quantitative real-time PCR. Nine intact or fractionated adipose samples, from patients with GD and/or TED, were analysed ex vivo. Eight expressed the TSHR, at levels approaching the thyroid, and one was at the limit of detection. Thirteen/fifteen orbital and abdominal fat samples from patients free of GD and TED, measured ex vivo, were negative for TSHR transcripts and two were at the limit of detection. All preadipocyte samples induced to differentiate in vitro expressed the TSHR. To investigate the influence of thyroid hormone status on adipose TSHR expression, we induced hyper- and hypothyroidism in BALBc mice by administering tri-iodothyronine and propylthiouracil respectively. In euthyroid animals, whole fat samples were at the limit of detection and were not altered by thyroid hormone status. The results show that adipose TSHR expression ex vivo indicates adipogenesis in progress in vivo and is associated with the autoimmune/inflammatory process in GD and TED but is not restricted to the orbit or influenced by thyroid hormone status.
P White and MJ Dauncey
The genomic actions of thyroid hormones (THs) are mediated by receptors (TRs) that are encoded by two protooncogenes, c-erbA-alpha and c-erbA-beta. The precise functions of the TR isoforms are unclear and this study focuses on the potential roles of the TRalpha and TRbeta isoforms in mammalian striated muscles postnatally. The porcine TRalpha1, TRalpha2 and TRbeta1 cDNAs were first cloned, sequenced and characterised by Northern blotting. A quantitative analysis of TR isoform expression was then undertaken, using RNase protection analysis with novel riboprobes designed to detect relative expression levels of TRalpha1, TRalpha2, TRbeta1 and TRbeta2, in functionally distinct muscles from 7-week-old pigs kept under controlled conditions of nutrition and thermal environment. We found a striking muscle-specific pattern of TRalpha isoform distribution: in heart the mRNA level of TRalpha2 (non-TH binding) was markedly greater (P<0.01) than that of TRalpha1 (TH binding); in longissimus dorsi the opposite pattern of expression occurred (TRalpha1>TRalpha2, P<0.001); in soleus, diaphragm and rhomboideus there were no differences between the two isoforms. The overall abundance of TRbeta was very much lower than that of TRalpha, and TRbeta1 was expressed at a higher level than TRbeta2 in all muscles. Together with recent data from TR gene inactivation studies and the established role of TH in determining myosin heavy chain isoform expression and muscle phenotype, these results suggest a role for differential expression of TR isoforms in acquisition and maintenance of optimal cardiac and skeletal muscle function.
Pamela Navarrete-Ramírez, Maricela Luna, Carlos Valverde-R, and Aurea Orozco
. ( doi:10.1006/gcen.1998.7103 ). Galay-Burgos M Power DM Llewellyn L Sweeney GE 2008 Thyroid hormone receptor expression during metamorphosis of Atlantic halibut ( Hippoglossus hippoglossus ) . Molecular and Cellular Endocrinology 281 56 – 63 . ( doi:10