Uroguanylin: a new actor in the energy balance movie

C Folgueira¹₂, S Barja-Fernandez¹₂, P Gonzalez-Saenz¹₂, V Pena-Leon¹₂, C Castelao¹₂, M Ruiz-Piñon¹, F F Casanueva²⁻⁵, R Nogueiras²⁻³ and L M Seoane¹₂

¹Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
²CIBER Fisiopatología Obesidad y Nutrición (CiberOBN), Instituto Salud Carlos III, Madrid, Spain
³Department of Physiology, CIBUS, USC, IDIS Santiago de Compostela, Santiago de Compostela, Spain
⁴Operative Dentistry and Endodontics, USC, Santiago de Compostela, Spain
⁵Laboratorio de Endocrinología Molecular y Celular, USC, Santiago de Compostela, Spain

Correspondence should be addressed to L M Seoane: luisamaria.seoane@usc.es or Luisa.Maria.Seoane.Camino@sergas.es

Abstract

Uroguanylin (UGN) is a potential target in the fight against obesity. The mature protein is released after enzymatic cleavage from its natural precursor, proUGN. UGN is mostly produced in the gut, and its production is regulated by nutritional status. However, UGN is also produced in other tissues such as the kidneys. In the past, UGN has been widely studied as a natriuretic peptide owing to its involvement in several different pathologies such as heart failure, cancer and gastrointestinal diseases. However, recent studies have suggested that UGN also acts as a regulator of body weight homeostasis because it modulates both food intake and energy expenditure. This ultimately results in a decrease in body weight. This action is mediated by the sympathetic nervous system. Future studies should be directed at the potential effects of UGN agonists in regulating body weight in human obesity.

Key Words
- uroguanylin
- body weight
- obesity
- energy balance

Introduction

Energy homeostasis to maintain optimum body weight is implemented through the interaction between various neuroendocrine systems, and the gastrointestinal–brain axis has been revealed as a key mediator of this regulation (Cummings & Overduin 2007). The gastrointestinal tract (GI tract) releases several peptides that act as hormonal and humoral signals—mainly in response to food intake— which reach different regions of the brain and carry information about the nutritional status of the whole organism. Such signals can be translated into feelings of satiation or hunger to regulate appetite. Satiety signals are potential targets for the design of anti-obesity drugs, which would greatly advance the fight against obesity (Strader & Woods 2005).

Recently discovered satiety peptide called uroguanylin (UGN) or GUCA2B (guanylate cyclase activator 2B) comprises 16 amino acids and is secreted as a prohormone (proUGN) from duodenal epithelial cells into the lumen. It undergoes postprandial enzymatic conversion into its active form. Once activated, UGN acts as an agonist of the transmembrane receptor guanylyl cyclase 2C (GUCY2C) on intestinal epithelial cells, increasing intracellular levels of cyclic guanosine monophosphate (cGMP) (Fruhbeck 2011, Valentino et al. 2011) (Fig. 1).

Guanylin or (GUCA2A, guanylate cyclase activator 2A) is an analog of UGN that also bind to the GUCY2C transmembrane receptor. It is a 15-amino acid peptide that is secreted as a prohormone, proganoynalin, from...
colonic epithelial cells and is cleaved into its active form (Schulz et al. 1990, Currie et al. 1992).

All GUCY2C analogs are responsible for decreasing sodium and water permeability, which increases chloride secretion owing to the phosphorylation of the cystic fibrosis transmembrane receptor (CFTR). This process is regulated by elevated levels of cGMP within epithelial intestinal cells. Overproduction of uroguanylin or guanylin leads to acute diarrhea, which is typically found in bacterial infections when *Staphylococcus* enterotoxins (STs) bind to the GUCY2C receptor (Currie et al. 1992, Forte & Currie 1995).

Moreover, the pharmacological industry has created synthetic agonists of UGN that also bind to the GUCY2C receptor. Examples include linaclotide, which is used for the treatment of irritable bowel syndrome, retains many structural features of human bacterial enterotoxins (Brancale et al. 2017), and plecanatide and dolcanatide, which have many of the structural and functional characteristics of the endogenous ligand uroguanylin (Shailubhai et al. 2015).

Regulation of intestinal UGN production

The enterochromaffin cells (EC cells) of the intestine are the main source of UGN in humans and rats (Brenna et al. 2016). To a lesser extent, enteroendocrine cells (EE cells) are also a source of UGN. UGN is released from the gastrointestinal tract immediately after food intake (Valentino et al. 2011). Very prolific UGN mRNA expression in the small intestines of rats has been reported (Date et al. 1999), although lower levels have also been found in their stomachs (Folgueira et al. 2016b). Extraintestinal tissues such as the pancreas, adrenal glands, lungs and testis are also sources of UGN (Laney et al. 1992, Miyazato et al. 1996, Blanchard & Cousins 1997, Li et al. 1997, Nakazato et al. 1998).

The intestinal levels of UGN are directly regulated by nutritional status and correlate with UGN levels in the plasma (Folgueira et al. 2016b). In mice, circulating levels of proUGN increase in response to the ingestion of nutrients (Valentino et al. 2011). According to the postprandial release of UGN, animals in a fasting state have reduced levels of UGN in the duodenum, which correlates with decreased plasma UGN levels, compared with animals fed *ad libitum* (Folgueira et al. 2016b). Furthermore, when fasted animals are re-fed, the intestinal and plasma levels of UGN are restored. These regulation of UGN by energy availability is dependent on leptin, an hormone synthesized and secreted in proportion to the amount of adipose tissue, whose levels are decreased in fasting states and restored after refeeding (Trayhurn et al. 1995). The following evidence supports this: first, UGN expression in the intestine was increased after intraperitoneal leptin injection at doses of 0.5 µg per g body weight every 12 h for 3 days (Folgueira et al. 2016b). Second, in leptin-deficient ob/ob mice, UGN levels remained unaltered after fasting or refeeding, indicating that nutritional status alone cannot regulate UGN production when leptin is not present (Folgueira et al. 2016b). Third, leptin-deficient ob/ob mice have low levels of intestinal and plasma UGN compared with their wild-type counterparts, and leptin treatment restores UGN levels in the ob/ob mutants to those found in the wild-type mice (Folgueira et al. 2016b). Finally, a
classical model of hyperleptinemia (obese animals fed a high-fat diet) exhibits high levels of circulating leptin and increased levels of UGN in the intestine and plasma. In addition, it has been suggested that a reduction in intestinal levels of UGN following intake of a high-calorie diet silences hypothalamic GUCY2C and regulates satiety. A novel mechanism has been proposed that involves a role for UGN in the disturbance of the gut–brain axis that occurs in obesity (Kim et al. 2016). However, GUCY2C receptors in the hypothalamus are not affected by obesity, which suggests that centrally administered UGN is effective in treating obesity. It is important to note that divergent circulating prouroguanylin levels have been found in human obesity compared to rodents with diet-induced obesity. In this sense, and accordingly to the findings in ob/ob mice, recent clinical studies have found decreased proUGN levels in both adolescent (Di Guglielmo et al. 2017a,b) and adult (Rodriguez et al. 2016) obese subjects. UGN downregulation in obesity is associated with endoplasmic reticulum (ER) stress (Kim et al. 2016). In line with this observation, a recent study has found that inflammation correlates with decreased circulating proUGN levels female adolescents with obesity (Di Guglielmo et al. 2017b). In addition, circulating proUGN levels are also decreased in human obesity in relation to adiposity, with weight loss achieved by bariatric surgery inducing a significant increase of circulating proUGN (Rodriguez et al. 2016).

In human obesity, the intestinal expression of guanylin peptides is not only regulated by leptin, but also by insulin and sexual hormones. In this regard, obese patient with type 2 diabetes exhibit increased protein expression of proguanylin in the small intestine compared with obese normoglycemic patients (Rodriguez et al. 2016). Moreover, female obese adolescents exhibit an increased intestinal immunostaining of uroguanylin and guanylin compared with age-matched male pairs (Di Guglielmo et al. 2017a).

In summary, nutritional status is a key factor in regulating UGN production, and leptin is a direct regulator of UGN production. Taken together, the evidence indicates that UGN is a part of the intestine–brain–adipose tissue network that regulates energy homeostasis and body weight (Fig. 2).

Centrally administered UGN and energy homeostasis regulation

It has been suggested that UGN plays a role as a satiety factor in the brain–gastrointestinal axis (Fruhbeck 2011) regulating food intake and energy homeostasis, and ultimately body weight. It is widely known that the integration of all neurohormonal signals produced in the periphery and the regulation of the appetite occur mainly in the hypothalamus. Accordingly, it has recently been discovered that once uroguanylin is secreted by the gut into the circulation, it targets the GUCY2C receptor of the hypothalamus, activating anorexigenic pathways and producing satiation in mice (Valentino et al. 2011).

Pharmacological effects of acute UGN administration

It has been shown that systemic administration of a GUCY2C agonist reduces food intake in wild-type mice, but this effect has not been observed in GUCY2C-deficient mice. It has also been shown that GUCY2C activation in the central nervous system—especially in the hypothalamus—through the specific administration of a GUCY2C agonist reduces food intake (Valentino et al. 2011). In spite of these findings, reports assessing
the metabolic role of endogenous UGN and its receptor have shown controversial findings. A study indicated that GUCY2C receptor knockout mice have elevated levels of body fat as a consequence of increased food intake (Valentino et al. 2011). In contrast, a following study showed that GUCY2C-knockout mice had unaltered body weight, adiposity and glucose tolerance (Begg et al. 2014). Therefore, the physiological significance of the UGN-GUCY2C system for the control of energy homeostasis is not fully understood.

Pharmacological effects of UGN chronically administered

The putative anorectic action of UGN when administered at short term did not occur when UGN was administered for longer periods. The treatment of obese mice with centrally administered UGN during one week induces a reduction in body weight, independently of food intake (Folgueira et al. 2016a). The decrease in body weight found after UGN administration was accompanied by a reduction in body fat and was due to an increase in energy expenditure. Accordingly, the thermogenic program in brown adipose tissue (BAT) was activated as demonstrated by an increase in the main thermogenic markers (uncoupling protein 1 (UCP1), uncoupling protein 3 (UCP3), PR domain-containing 16 (PRMD16) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) in the BAT of UGN-treated obese mice (Folgueira et al. 2016a)). Furthermore, the central administration of UGN also induced the conversion of white adipocytes into brown adipocytes, a phenomenon named browning (Folgueira et al. 2016a). This was demonstrated by the increase in UCP-1 levels in the subcutaneous adipose tissue. In addition to this thermogenic effect, centrally administered UGN also stimulated lipid mobilization in subcutaneous adipose tissue indicated by the higher expression of pHSL (Folgueira et al. 2016a). Together, the different effects in white adipose tissue and BAT, which are mediated through the sympathetic nervous system, contribute to the reduction in body fat and body weight described in obese mice after treatment with centrally administered UGN. Besides the lipolytic action of uroguanylin through central mechanisms, the white adipose tissue expresses GUCY2C receptors and both guanylin and uroguanylin exert a direct action on human visceral adipocytes stimulating lipolysis through the activation and phosphorylation of HSL and the upregulation of several genes involved in lipid mobilization (Rodriguez et al. 2016).

Several studies have shown that β-adrenergic receptors constitute a key factor in the regulation of adipose tissue metabolism by the autonomous nervous system. Because the parasympathetic nervous system is not involved in the effect of centrally administered UGN at a peripheral level in adipose tissue, it is thought that the sympathetic nervous system plays a role. Accordingly, there is no effect following a central injection of UGN in the knockout mice for the three β-adrenergic receptors (β1, β2 and β3) with regard to body weight, fat mass or brown and white adipose tissue metabolism.

However, the effects of central UGN were not just limited to adipose tissue, because increased gastric motility was observed, as demonstrated by an increase in the amount of fecal matter. This gastric effect occurs via the vagus nerve, which is thought to be the main connection between the gastrointestinal tract and the brain (Seoane et al. 2007). Accordingly, the gastric effect of centrally administered UGN disappears in mice that have undergone surgical vagotomy. However, in such resected mice the effects of UGN on reducing body weight and fat mass, and increasing the thermogenic program and browning are still present, which suggests that these effects are the result of a mechanism that is independent of the parasympathetic nervous system (Folgueira et al. 2016a).

Physiological role of UGN

The physiological role of UGN in energy balance regulation is actually reinforced by the most recent published works. It was described that, centrally administered UGN induces weight loss and a reduction in fat mass in obese mice, independently of food intake. The effects of central UGN in peripheral organs are mediated by both branches of the autonomous nervous system, while the sympathetic nervous system controls fat metabolism in the adipose tissue and the parasympathetic nervous system regulates motility in the gastrointestinal tract (Fig. 3).

The effects of UGN on glucose homeostasis have not been fully elucidated. The only investigation of this aspect did not discover any effect of centrally administered UGN analogues on glucose homeostasis. In a study by Begg and coworkers (2014) UGN-deficient mice fed a high-fat diet did not show any alteration in glucose tolerance. However, when the mice were fed a mixed meal, they exhibited impaired glucose tolerance and elevated levels of glucose in the blood. Furthermore, the deficient mice also exhibited increased postprandial plasma insulin levels (Begg et al. 2014). In addition, it was recently described
that circulating concentrations of proguanylin, but not prouroguanylin, are associated with markers of insulin resistance, such as glycemia or the HOMA index, and its intestinal protein expression is significantly increased in obese patients with type 2 diabetes (Rodriguez et al. 2016).

Future research should attempt to determine whether the loss of GUCY2C signaling is involved in the development of glucose intolerance and should elucidate the main mechanisms involved in glucose homeostasis due to UGN.

Other functions of UGN

Besides the emerging role of UGN in the gut–brain axis as a regulator of feeding, energy homeostasis, body mass and metabolism in rodents with normal physiology (Valentino et al. 2011, Folgueira et al. 2016a), other functions have been attributed to UGN-GUCY2C. These functions affect other physiological systems and are potential therapeutic targets in various pathologies including heart failure (HF), gastrointestinal diseases and cancer (Li et al. 2007, Lin et al. 2016).

It has been suggested that pro-uroguanylin (proUGN)—secreted from the intestine in response to oral salt loads—acts as an endocrine hormone on renal tubule epithelial cells as part of an entero-renal natriuretic axis (Forte et al. 1996). The infusion of both UGN and proUGN into rodents induces a natriuretic response activating the renal mechanisms involved in Na+ excretion (Fellner et al. 2016). It was initially proposed that the dietary ingestion of salt induces an increase in the secretion of proUGN by EC (Moss et al. 2008), proUGN is converted to UGN in the intestine and the renal tubules (Hamra et al. 1996, Qian et al. 2008), leading to an increase of Na+ in the urine (Greenberg et al. 1997, Nakazato et al. 1998, Lessa et al. 2012) and a decrease in intestinal Na+ absorption (Joo et al. 1998, Toriano et al. 2011). As part of this entero-renal axis, UGN signaling acts by regulating Na+ homeostasis. Salt ingestion is not reflected in circulating proUGN levels and does not affect the gastrointestinal expression of uroguanylin (Fellner et al. 2016), but high levels of salt intake induce the synthesis of proUGN in the kidney; proUGN is subsequently delivered to the lumen of the nephron in its active form, UGN. The most recent findings on this topic suggest that the regulation of the UGN system by salt consumption takes place mainly in the kidneys and is not related to the intestinal mechanism controlling UGN production (Toriano et al. 2011). The natriuretic effect of UGN has been described in UGN-knockout mice, which have hypertension as a consequence of a delay in sodium excretion (Fellner et al. 2016).

Patients that have experienced HF have high plasma levels of proUGN, and this alteration is initially showed to be independent of hypertension or renal alterations. Furthermore, UGN levels tend to increase as the severity of the HF increases (Carrithers et al. 2000). It is thought that the increase in UGN levels associated with HF might be due to impaired renal clearance leading to accumulation (Carrithers et al. 2000). Moreover, acute renal impairment increases the level of circulating proUGN and reduces its conversion into the active form. This is due to a decrease in glomerular filtration (Qian et al. 2008).

HF patients have a combination of impaired renal response and reduced renal clearance of circulating
proUGN, resulting in diminished natriuretic and diuretic activity. The mentioned factors contribute to intravascular volume expansion, which explains the correlation between high prohormone levels and hypertension described, differently to that found by Carriethers and coworkers in a more recent study (Narayan et al. 2010).

The GUCY2C pathway is downregulated in patients suffering from chronic inflammatory bowel diseases (CIBD: Crohn’s disease (CD) and ulcerative colitis (UC)); this downregulation is more significant when the clinical conditions worsen (Brenna et al. 2015). The GUCY2C signaling pathway plays a key role in the regulation of intestinal fluid and the balance of electrolytes. Guanylin and uroguanylin act by providing optimal intestinal mucosa hydration by secreting water, NaCl, and HCO₃⁻ (Lan et al. 2016). In this context, it has been proposed that GUCY2C signaling regulates the intestinal inflammatory response. Accordingly, the restoration of the silenced pathway is a promising approach to treating patients with the chronic diseases mentioned earlier (Lan et al. 2016). Currently, various promising drugs that are structurally similar to uroguanylin and guanylin and act as potential therapeutic analogs are being tested to treat chronic diseases. Linaclotide is one such drug; it is used to treat CIBD and chronic idiopathic constipation (CIC) (Ahsan et al. 2017). Two other analogs of uroguanylin—plecanatide and dolcanatide—can be used to ameliorate colonic inflammation in acute and chronic models of murine colitis, possibly through the suppression of proinflammatory cytokine production (Shailubhai et al. 2015). Furthermore, recent clinical studies suggest that plecanatide is a safe and orally active drug candidate, with promising potential for use in the treatment of various GI disorders and diseases (Shailubhai et al. 2013).

These findings represent a new role for GC-C agonists in the chemoprevention of inflammation associated with colorectal carcinogenesis in populations at risk, including obese individuals.

Concluding remarks

The UGN-GUCY2C system constitutes a promising target in the fight against obesity. The pharmacological utility of GUCY2C agonist was suggested by the initial findings in preclinical models. The central administration of UGN to obese mice induce a decrease in body weight independent of food intake, an effect mediated by the increase in energy expenditure as probed by the activation of the thermogenic program in BAT and the induction of lipid oxidation in WAT. Futures studies should be aimed to elucidate if in humans the beneficial effects found in preclinical models are reproduced.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.

Funding

This work was supported by the Instituto de Salud Carlos III (PI15/01272) and co-funded by FEDER.
References

Cummings DE & Overduin J 2007 Gastrointestinal regulation of food intake. *Journal of Clinical Investigation* **117** 13–23. (https://doi.org/10.1172/JCI30227)

Fellner RC, Moss NG & Goy MF 2016 Dietary salt regulates uroguanylin expression and signaling activity in the kidney, but not in the intestine. *Physiological Reports* **4** e12782. (https://doi.org/10.14814/phy2.12782)

Endocrinology 139 5247–5254. (https://doi.org/10.1210/endo.139.12.6347)
Narayan H, Mohammed N, Quinn PA, Squire JB, Davies JE & Ng LL
2010 Activation of a novel natriuretic endocrine system in humans
Qian X, Moss NG, Fellner RC & Goy MF 2008 Circulating
prouroguanylin is processed to its active natriuretic form exclusively
Rodriguez A, Gomez-Ambrosi J, Catalan V, Ezquerro S, Mendez-
Gimenez L, Becerril S, Ibanez P, Vila N, Margall MA, Moncada R, et
al. 2016 Guanylin and uroguanylin stimulate lipolysis in human
(http://jme.endocrinology-journals.org) © 2018 Society for Endocrinology
Printed in Great Britain Published by Bioscientifica Ltd.

Shailubhai K, Palejwala V, Arjunan KP, Saykedkar S, Nefsky B, Foss JA,
Comisky S, Jacob GS & Plevy SE 2015 Plecanatide and dolcanatide,
novel guanylate cyclase-C agonists, ameliorate gastrointestinal
inflammation in experimental models of murine colitis. World
Journal of Gastrointestinal Pharmacology and Therapeutics 6 213–222.
(https://doi.org/10.4292/wjgpt.v6.i4.213)
Strader AD & Woods SC 2005 Gastrointestinal hormones and food
gastro.2004.10.043)
Uroguanylin regulates net fluid secretion via the NHE2 isofrom of
the Na/H+ exchanger in an intestinal cellular model. Cellular
Physiology and Biochemistry 28 733–742. (https://doi.org/10.1159/000335767)
Trayhurn P, Thomas ME, Duncan JS & Rayner DV 1995 Effects of fasting
and refeeding on ob gene expression in white adipose tissue of lean
org/10.1016/0014-5793(95)00719-P)
Valentino MA, Lin JE, Snook AE, Li P, Kim GW, Marszalowicz G,
Magee MS, Hyslop T, Schulz S & Waldman SA 2011 A
uroguanylin-GUCY2C endocrine axis regulates feeding in mice.
org/10.1172/JCI57925)
Weinberg DS, Lin JE, Foster NR, Della’Zanna G, Umar A, Seisler D,
Bioactivity of oral linaclotide in human colorectum for cancer
doi.org/10.1158/1940-6207.CAPR-16-0286)

Received in final form 28 November 2017
Accepted 4 December 2017
Accepted Preprint published online 4 December 2017