Netrin-1 restores cell injury and impaired angiogenesis in vascular endothelial cells upon high glucose by PI3K/AKT-eNOS

Ying Xing1,*, Jingbo Lai1,*, Xiangyang Liu1,*, Nana Zhang1, Jie Ming1, Hengxin Liu2 and Xi Zhang2

1Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
2Institute of Plastic and Reconstructive Surgery, Xijing Hospital, Forth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
*(Y Xing, J Lai and X Liu contributed equally to this work and are defined as the co-first authors)

Abstract
Diabetic foot ulceration (DFU) represents a common vascular complication of diabetes mellitus (DM) with high morbidity and disability resulting from amputation. Netrin-1 level was decreased in type 2 DM patients and has been identified as a protective regulator against diabetes-triggered myocardial infarction and nephropathy. Unfortunately, its role and molecular mechanism in DFU remain poorly elucidated. Here, netrin-1 levels were reduced in DM and DFU patients relative to healthy controls, with netrin-1 levels being the lowest in DFU patients. Moreover, exposure to high glucose (HG) also suppressed netrin-1 expression in human umbilical vein endothelial cells (HUVECs). Elevated netrin-1 expression by infection with Ad-netrin-1 adenovirus vector protected against HUVEC injury in response to HG by ameliorating the inhibitory effects on cell viability, lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, cell apoptotic rate and caspase-3 activity. Importantly, HG-impaired angiogenesis was improved after netrin-1 overexpression by elevating cell migration, capillary-like tube formation and VEGF production. Mechanism assay substantiated that netrin-1 elevation increased the phosphorylation levels of AKT and eNOS, and NO production, which was notably suppressed by HG, indicating that netrin-1 overexpression restored HG-triggered impairment of the PI3K/AKT-eNOS pathway. More intriguingly, preconditioning with LY294002 (PI3K/AKT antagonist) or NG-monomethyl-l-arginine (eNOS inhibitor) antagonized netrin-1-induced activation of the PI3K/AKT-eNOS pathway. Concomitantly, treatment with these antagonists also attenuated the protective role of netrin-1 in endothelial dysfunction upon HG stimulation. These results suggest that elevation of netrin-1 may restore HG-triggered impairment of HUVEC and angiogenesis by activating the PI3K/AKT-eNOS pathway, indicating a potential agent for wound healing in DFU patients.
Introduction

Diabetes mellitus (DM) ranks as a complicated and chronic health disease and is commonly accepted to be the fifth common cause of death with the escalating incidence worldwide (Roglic et al. 2005). It is estimated that 366 million people suffered from diabetes in 2011, which is predicted to reach 522 million by 2030. DM is recognized as a major contributor to high mortality and morbidity through a series of diabetic complications such as nephropathy and stroke. Among these, diabetic foot ulceration (DFU) is a proverbial consequence of DM, having 15% prevalence among hospitalized DM patients (Woo et al. 2013). Patients with DFU suffer higher mortality and disability than patients without foot ulcers. DFU is characterized by lessened vascularity and angiogenesis and leads to 84% of diabetes-related lower leg amputations (Liu et al. 2014). Importantly, DFU represents a main contributor to non-traumatic lower limb amputation in developed countries, resulting in an annual cost of 300 million pounds (Posnett & Franks 2008). Consequently, there is an urgent need to elucidate the mechanism underlying DFU and to develop efficient therapeutic strategies against DFU.

Hyperglycemia, a known characteristic of diabetes, usually results in refractory wound lesions and endothelial dysfunction, which, in turn, contributes to diabetic vascular complications including DFU (Marston & Dermagraft 2006, Wu & Chen 2016). It is generally believed that DFU is caused by neuropathy, infection and peripheral vascular disorders, which results in poor arterial inflow within limbs and consequently worse outcomes (Woo et al. 2013, Volmer-Thole & Lobmann 2016). Impairment of angiogenesis induced by chronic hyperglycemia is a pivotal cause of delayed healing in DFU due to insufficient blood supply (Brem & Tomic-Canic 2007, Carmeliet & Jain 2011, Costa & Soares 2013, Ruzehaji et al. 2014). The healing of diabetic wounds is a complex process, involving in various cellular processes and cytokines including NO (Brem & Tomic-Canic 2007). Enhanced synthesis of NO and VEGF, both of which are critical regulators for vascularogenesis, can improve blood flow and, consequently, contribute to wound healing of diabetic foot ulcers (Mohajeri-Tehrani et al. 2014). Recent study confirmed that elevating the pro-angiogenic response by attenuating flightless I obviously accelerated skin wound healing, implying a promising therapeutic strategy against DFU (Ruzehaji et al. 2014).

Netrin-1 is initially recognized to be an axon guidance molecule, and it has an analogous structure to laminin. Netrin-1 possesses a prominent role in a variety of physiological processes, including cell injury, proliferation and migration (Son et al. 2013, Yang et al. 2017). In umbilical cord blood-derived mesenchymal stem cells (UCB-MSC), netrin-1 protected against hypoxic injury-induced cell apoptosis via the expression of heat shock protein (HSP) 27 (Son et al. 2013). The growing body of evidence has corroborated a vital function of netrin-1 in injury repair of multiple diseases (Wang et al. 2008, Ke et al. 2014). Administration of netrin-1 antagonizes both ischemia–reperfusion (I/R) injury of kidney and kidney function repair by suppressing endothelial cell activation and leukocyte infiltration (Wang et al. 2008). Emerging report demonstrated the reduction of plasma netrin-1 levels in patients diagnosed with type 2 DM, and netrin-1 levels was found to be negatively related to insulin resistance and glucose homeostasis (Liu et al. 2016). Importantly, administration with netrin-1-expressing mesenchymal stem cells facilitated the repair of myocardial infarction-triggered ischemic injury in diabetic mice by promoting NO production and subsequent neovessel formation (Ke et al. 2014). Netrin-1 also exerts the beneficial efficacy in the treatment of diabetic nephropathy (Mohamed et al. 2012, Tak et al. 2013). Unfortunately, its role and molecular mechanism in DFU are poorly elucidated. In this study, we aimed to investigate the levels of netrin-1 in DFU patients and hyperglycemia conditions in vitro. Furthermore, the role of netrin-1 and its involvement in a potential mechanism of HUVEC dysfunction under high glucose were also investigated in the present research.

Materials and methods

Patients

Type 2 diabetic patients with DFU (DFU group, n=35) or not (DM group, n=35) and healthy individuals (control group, n=30) were recruited from the Department of Endocrinology, Xijing Hospital, Forth Military Medical University, during the period of August 2013–December 2014. Patients with DFU were enrolled into this research via free access

DOI: 10.1530/JME-16-0239
Published by Bioscientifica Ltd.

http://jme.endocrinology-journals.org
Netrin-1 restores endothelial dysfunction

Y XING, J LAI, X LIU and others

Research 58:4 169

Detection of netrin-1 levels in plasma

Participant blood samples were collected in EDTA containers and centrifuged at 503g for 10min. Then, plasma specimens were stored at −80°C for subsequent experiments. The concentration of netrin-1 in plasma specimens was measured according to the instruction of a commercial human netrin-1 ELISA kit (ToYong Bio, Shanghai, China).

Cell culture and treatment

HUVECs were purchased from ATCC. Cells were seeded in 75-cm² flasks and incubated with M199 medium (Grand Island, NY, USA) supplement with 10% FBS. For glucose exposure, cells were cultured with M199 medium containing 5.5 mmol/L glucose (normal glucose group) or 33 mmol/L glucose (high glucose group) for 48h. All cells were maintained in a humidified incubator with 5% CO₂ at 37°C.

Assessment of netrin-1 mRNA levels by quantitative real-time PCR (qRT-PCR)

Total RNA from cells was extracted using RNeasy Plus (TaKaRa Bio). Then, 1.5μg of extracted RNA was reverse-transcribed to synthesize the cDNA with an ImProm II reverse-transcriptase kit (Promega). Afterward, 1μL of cDNA was used as a template for qRT-PCR assay using a SYBR Premix Ex TaqTM II Kit (TaKaRa). The specific primers for netrin-1 and β-actin were synthesized by Sangon (Shanghai, China) and used as follows: netrin-1, sense: 5′-TGGGGCGGTTGTCCTATTTTC-3′, anti-sense: 5′-GCCCTTGGTGTGCTTGGCTGT-3′; β-actin, sense: 5′-CAGGATGGAGGCGGAGACTATC-3′, anti-sense: 5′-AACAGGTTTGGGACACACAG-3′. The reaction was carried out using ABI PRISM Sequence Detector System 7500 (Perkin-Elmer, Applied Biosystems). The mRNA levels of netrin-1 were normalized to β-actin. Relative mRNA levels were calculated using 2−ΔΔCT method.

Immunoblotting

After lysis in RIPA lysis buffer, the extracted protein was separated by 12% SDS-PAGE and then electroblotted onto PVDF membranes (Millipore). For Western blotting assay, the membrane was blocked with 5% skim milk for 2h. After rinsing, primary antibodies were added and incubated at 4°C overnight, including antibodies against netrin-1 (1:3000) (Abcam), phosphorylated (p)-AKT and AKT (1:1000) (Cell Signaling Technology), p-eNOS (1:600, Abcam), eNOS (1:600, Abcam), VEGF (1:100) (Invitrogen) and β-actin (1:500, Invitrogen). Then, the goat anti-rabbit (1:500) and anti-mouse (1:10,000) secondary antibodies conjugated with HRP (Invitrogen) were added and incubated at room temperature for 1h. To visualize the immunoreactive proteins, ECL reagent (Invitrogen) was added. The binding bands were analyzed using a Gel DocTM XR imaging system (Bio-Rad) and quantified via Quantity One software (Bio-Rad). The relative protein expression was normalized to β-actin.

Recombinant adenovirus vector construction and transduction

To construct a recombinant adenovirus vector expressing netrin-1, full-length cDNA of human netrin-1 was inserted into pAdTrack-CMV (Agilent) plasmid-containing green fluorescent protein (GFP). After homologous recombination with pAdEasy-1 in BJ5183, E. coli strain, DNA sequencing was carried out to evaluate the insert identity and orientation by Sangon Company. The Ad-netrin-1 vectors were then transfected into HEK293T cells (ATCC). After propagation in 293T cells, the amplified virus was purified using CsCl2 gradient centrifugation. Then, the viral titer was assessed using the Adeno-X Rapid Titer kit (BD Biosciences, San Jose, CA, USA). For transduction, HUVECs were infected with the recombinant virus suspension of Ad-Srx-1, or Ad-GFP, at the titer of 1 × 10⁹ TU/mL for 48h at 37°C.

Cell proliferation assay by MTT

Cells were seeded into 96-well plates at a density of 5000 cells/well. Then, cells were treated with either eNOS inhibitor N⁵-monomethyl-l-arginine (NMA, 100μM) or PI3K/AKT inhibitor LY294002 (20μM) (Sigma) prior to infection with Ad-netrin-1 under high glucose. After that, oxyomyelitis, skin diseases, pregnancy and kidney failure. Patients receiving any pharmaceutical treatment to enhance wound healing were also excluded. Individuals without a history of diabetes and with a normal fasting blood glucose levels were defined as the control group. All biochemical parameters were determined by routine techniques using a Hitachi-912 Autoanalyzer (Hitachi). This research was approved by the Ethics Committee of Xijing Hospital, Forth Military Medical University and conducted according to the Helsinki Declaration. All participants gave written informed consent.

Assessment of netrin-1 mRNA levels by quantitative real-time PCR (qRT-PCR)

Total RNA from cells was extracted using RNeasy Plus (TaKaRa Bio). Then, 1.5μg of extracted RNA was reverse-transcribed to synthesize the cDNA with an ImProm II reverse-transcriptase kit (Promega). Afterward, 1μL of cDNA was used as a template for qRT-PCR assay using a SYBR Premix Ex TaqTM II Kit (TaKaRa). The specific primers for netrin-1 and β-actin were synthesized by Sangon (Shanghai, China) and used as follows: netrin-1, sense: 5′-TGGGGCGGTTGTCCTATTTTC-3′, anti-sense: 5′-GCCCTTGGTGTGCTTGGCTGT-3′; β-actin, sense: 5′-CAGGATGGAGGCGGAGACTATC-3′, anti-sense: 5′-AACAGGTTTGGGACACACAG-3′. The reaction was carried out using ABI PRISM Sequence Detector System 7500 (Perkin-Elmer, Applied Biosystems). The mRNA levels of netrin-1 were normalized to β-actin. Relative mRNA levels were calculated using 2−ΔΔCT method.

Immunoblotting

After lysis in RIPA lysis buffer, the extracted protein was separated by 12% SDS-PAGE and then electroblotted onto PVDF membranes (Millipore). For Western blotting assay, the membrane was blocked with 5% skim milk for 2h. After rinsing, primary antibodies were added and incubated at 4°C overnight, including antibodies against netrin-1 (1:3000) (Abcam), phosphorylated (p)-AKT and AKT (1:1000) (Cell Signaling Technology), p-eNOS (1:600, Abcam), eNOS (1:600, Abcam), VEGF (1:100) (Invitrogen) and β-actin (1:500, Invitrogen). Then, the goat anti-rabbit (1:500) and anti-mouse (1:10,000) secondary antibodies conjugated with HRP (Invitrogen) were added and incubated at room temperature for 1h. To visualize the immunoreactive proteins, ECL reagent (Invitrogen) was added. The binding bands were analyzed using a Gel DocTM XR imaging system (Bio-Rad) and quantified via Quantity One software (Bio-Rad). The relative protein expression was normalized to β-actin.

Recombinant adenovirus vector construction and transduction

To construct a recombinant adenovirus vector expressing netrin-1, full-length cDNA of human netrin-1 was inserted into pAdTrack-CMV (Agilent) plasmid-containing green fluorescent protein (GFP). After homologous recombination with pAdEasy-1 in BJ5183, E. coli strain, DNA sequencing was carried out to evaluate the insert identity and orientation by Sangon Company. The Ad-netrin-1 vectors were then transfected into HEK293T cells (ATCC). After propagation in 293T cells, the amplified virus was purified using CsCl2 gradient centrifugation. Then, the viral titer was assessed using the Adeno-X Rapid Titer kit (BD Biosciences, San Jose, CA, USA). For transduction, HUVECs were infected with the recombinant virus suspension of Ad-Srx-1, or Ad-GFP, at the titer of 1 × 10⁹ TU/mL for 48h at 37°C.

Cell proliferation assay by MTT

Cells were seeded into 96-well plates at a density of 5000 cells/well. Then, cells were treated with either eNOS inhibitor N⁵-monomethyl-l-arginine (NMA, 100μM) or PI3K/AKT inhibitor LY294002 (20μM) (Sigma) prior to infection with Ad-netrin-1 under high glucose. After that,
20 μL of MTT (5 mg/mL, Sigma) was added to each well for a further 4-h incubation. Subsequently, formazan crystals were dissolved by DMSO for 10 min. Cell viability was then assessed by detecting the absorbance at 570 nm (OD570) and expressed by calculating the absorbance percentage of the treated group vs control group.

Detection of lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels

After the collection of culture medium, the activities of LDH and MDA were measured as per the manufacturer’s protocols of LDH and MDA assay kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

Caspase-3 assay

The activity of caspase-3 was detected for different groups using the caspase-3 Fluorescent Assay Kits (Clontech). Cells under the indicated treatment were lysed and centrifuged. Then, the harvested supernatants were incubated for 1 h with 5 μL of DEVD-AFC, a specific substrate for caspase-3. Finally, caspase-3 activity was evaluated by measuring the fluorescence intensities using a FL600 fluorescent reader (BioTek Instruments).

Apoptosis analysis

Cell apoptotic rates were measured by flow cytometric analysis using Annexin V-FITC/PI staining. Briefly, cells in different groups were trypsinized. After rinsing with PBS, cells were suspended in binding buffer, and then incubated with 10 μL Annexin V-FITC (Beyotime, Shanghai, China) for 15 min under darkness. Then, 5 μL of PI was also added for an additional 5 min. The specimens were subjected into FACSCalibur flow cytometer (BECTON, Franklin Lakes, NJ, USA) to determine the apoptotic rates.

Detection of cell migration by Transwell assay

The migration of HUVECs under various treatment specimens was evaluated using a Transwell system (Millipore) with 8 μm pore size. For migration, cells (2 × 10⁴) were seeded into the upper chamber with serum-free M199 medium, and chemotaxis was performed by loading 10% FBS to the lower chamber. After approximately 24 h, cells that had migrated to the bottom surface of membrane were fixed with 4% paraformaldehyde, followed by staining with 0.1% crystal violet. The mean number of migrated cells was calculated from five random fields per specimen using a BX51 microscope (Olympus).

Tube formation in vitro

The formation of capillary tube was assessed by Matrigel analysis. After seeding in 96-well plates pre-coated with Matrigel (BD Biosciences), cells (1 × 10⁴/well) were treated with the indicated conditions. Twenty-four hours later, the formation of capillary-like tubular structures were captured under an inverted microscope. The number of tubes was quantified by assessing five randomly selected fields and presented as the percentage of tubes formed in control group.

ELISA assay of VEGF levels

After treatment with indicated conditions, the culture medium was harvested and centrifuged. Then, VEGF levels released into supernatants were determined using a Human VEGF Quantikine ELISA Kit (R&D Systems) in accordance with the manufacturer’s instructions.

Measurement of NO production

NO production in different culture medium was evaluated by determining the stable metabolite of NO, nitrite. After 10-min incubation with Griess reagent containing 1% sulfanilamide, 2% phosphoric acid and 0.1% naphthyl ethylenediamine dihydrochloride, samples were then analyzed by a SpectraMax Plus 384 spectrophotometer (Molecular Device, Sunnyvale, CA, USA) at 540 nm. Nitrite contents were assessed by reference to standard curves of nitrite.

Statistical analysis

All data were obtained from at least three independent trials and analyzed by SPSS 19.0 software. Results were exhibited as mean ± standard deviation (s.d.). Statistical significances (P < 0.05 and P < 0.01) were evaluated by Student’s t-test for two groups and one-way ANOVA for three or more groups, followed by a post hoc least significant difference (LSD) test.
Table 1 Characteristics of patients.

<table>
<thead>
<tr>
<th></th>
<th>Healthy control (n=30)</th>
<th>DM (n=35)</th>
<th>DFU (n=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>52.4 ± 2.1</td>
<td>54.3 ± 2.6</td>
<td>55.2 ± 3.1</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>17</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Female</td>
<td>13</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>62.18 ± 5.79</td>
<td>64.26 ± 6.17</td>
<td>65.11 ± 5.87</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/L)</td>
<td>5.14 ± 0.64</td>
<td>9.87 ± 2.89*</td>
<td>10.02 ± 2.51*</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>4.06 ± 0.38</td>
<td>8.76 ± 0.41*</td>
<td>8.25 ± 0.53*</td>
</tr>
<tr>
<td>Serum triglyceride (mmol/L)</td>
<td>7.96 ± 3.11</td>
<td>8.43 ± 3.32</td>
<td>8.22 ± 3.54</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>9.53 ± 2.14</td>
<td>8.76 ± 2.87</td>
<td>8.84 ± 3.06</td>
</tr>
</tbody>
</table>

Data were exhibited by mean ± s.d.
*P<0.05 vs healthy control groups.

Results

Decreased expression of netrin-1 in patients with DFU and HUVECs under HG

As shown in Table 1, no differences were observed in the clinical and biochemical characterizations of patient subjects, excepting the higher concentrations of fasting plasma glucose and HbA1c in the DM and DFU groups. Further analysis corroborated an obvious downregulation of netrin-1 levels in plasma specimens taken from DM and DFU patients, compared to that in control group (Fig. 1A). Importantly, netrin-1 was presented at the lower content in DFU group relative to DM group. Moreover, the dramatical decreases in netrin-1 mRNA (Fig. 1B) and protein levels (Fig. 1C) were also demonstrated in HUVECs upon HG exposure in contrast to normal glucose-treated group. Together, these results suggested a potential role of netrin-1 in the progression of DFU.

Elevation of netrin-1 antagonizes HUVEC injury triggered by HG exposure

To clarify the effect of netrin-1 on vascular endothelial cell injury under HG condition, cells were infected with Ad-netrin-1. The upregulation of netrin-1 in Ad-netrin-1 group was validated by qRT-PCR and Western assay (Fig. 2A and B). Functional analysis manifested that HG exposure reduced HUVEC viability to 40.11%, whereas this inhibitory function was notably attenuated after netrin-1 upregulation (Fig. 2C). Additionally, administration with HG augmented LDH release (Fig. 2D) and MDA levels (Fig. 2E), both the indices of cell injury. Intriguingly, ectopic expression of netrin-1 restrained the increases in LDH and MDA levels. Simultaneously, elevation of netrin-1 further attenuated the apoptotic rates of HUVECs upon HG from 32.67% to 12.78% (Fig. 2F). Furthermore, the high activity of caspase-3, a widely used indicator of cell apoptosis, in HUVECs under HG was also dramatically suppressed by netrin-1 overexpression (Fig. 2G). These data indicated that netrin-1 could protect against high glucose-induced HUVEC injury.

Ectopic expression of netrin-1 restores HG-impaired angiogenesis in HUVECs

The numbers of migrated cells were significantly reduced in response to HG stimulation (Fig. 3A). However,
Netrin-1 restores endothelial dysfunction

Y Xing, J Lai, X Liu and others

the inhibitory role of HG was reversed after netrin-1 overexpression. Importantly, upregulation of netrin-1 attenuated the inhibitory effect of HG on capillary-like tube formation by HUVECs (Fig. 3B). Moreover, exposure of HUVECs to HG dampened the VEGF expression, a critical factor in angiogenesis, which was noticeably ameliorated after netrin-1 elevation (Fig. 3C). Concomitantly, the decreased concentrations of VEGF in medium under HG stimulation were alleviated when cells were infected with Ad-netrin-1 vectors (Fig. 3D). These observations manifested that elevation of netrin-1 could execute the protective response to HG-injured angiogenesis in HUVECs.

Netrin-1 upregulation restores the injury in the activation of PI3K/AKT-eNOS pathway upon HG stimulation

To elucidate the underlying mechanism for the beneficial role of netrin-1 upregulation in endothelial dysfunction under HG, the activation of PI3K/AKT-eNOS signaling was explored. Here, exposure to HG reduced the phosphorylation level of AKT, but not in the...
Netrin-1 restores endothelial dysfunction

Figure 3
Effect of netrin-1 elevation on the impairment of angiogenesis in response to HG. After infection with Ad-netrin-1, HUVECs were incubated with HG. (A) Cell migration was analyzed by Transwell chamber. (B) Effect on capillary-like tube formation was evaluated by culturing on Matrigel (magnification ×100). (C) The expression of VEGF protein was determined by Western blotting assay. (D) Upregulation of netrin-1 ameliorated the inhibitory role of HG in VEGF concentration in culture medium. *P<0.05 vs control groups. #P<0.05 vs HG groups.

Figure 4
Netrin-1 restored the impairment of the PI3K/AKT–eNOS pathway in HG-stimulated HUVECs. (A) Phosphorylation of AKT and eNOS was determined in HG-treated cells that were infected with Ad-netrin-1, or not, by Western blotting. (B) Quantification analysis of p-AKT/AKT protein. (C) Quantification analysis of p-eNOS/eNOS expression. (D) Effects of netrin-1 on NO concentration in the indicated groups. *P<0.05 vs control groups. #P<0.05 vs HG groups.
expression of AKT protein (Fig. 4A). Simultaneously, the protein expression of p-eNOS was also suppressed under HG, whereas without the change in eNOS expression. However, upregulation of netrin-1 dramatically increased the phosphorylation levels of AKT and eNOS, but had little effects on the total AKT and eNOS expression (Fig. 4B and C), indicating that netrin-1 elevation restored the impairment of PI3K/AKT-eNOS signaling induced by HG. Additionally, HG exposure decreased the concentration of NO production from 24.56 μmol/L to 10.23 μmol/L, which was increased into 18.74 μmol/L when netrin-1 was overexpressed in HUVECs (Fig. 4D).
Netrin-1 improves HUVEC dysfunction in response to HG through the PI3K/AKT-eNOS pathway

We further investigated whether the PI3K/AKT-eNOS pathway was responsible for the protective effects of netrin-1 on HG-triggered cell and angiogenesis impairment. As shown in Fig. 5A and B, prior administration with LY294002 mitigated the augment in the expression of p-AKT and p-eNOS induced by netrin-1 overexpression. Concomitantly, pretreatment with NMA, an antagonist of the eNOS pathway, also attenuated netrin-1-increased phosphorylation levels of eNOS. The augmented production of NO in netrin-1-overexpressed groups was consistently decreased in HG-treated cells after pretreatment with both LY294002 and NMA (Fig. 5C). Moreover, ectopic expression of netrin-1 elevated cell viability upon HG, which was decreased when cells were preconditioned with LY294002 and NMA (Fig. 5D). At the same time, blocking the PI3K/AKT and eNOS pathways with their respective antagonists also potentiated the release of LDH (Fig. 5E) and cell apoptosis (Fig. 5F), which was attenuated by netrin-1 overexpression. Further, functional assays documented that netrin-1-induced increases in migrated cell number (Fig. 5G) and tube formation (Fig. 5H) were both inhibited in LY294002- and NMA-pretreated groups. Additionally, preconditioning with LY294002 and NMA also antagonized the production of VEGF triggered by netrin-1 elevation (Fig. 5I).

Discussion

Hyperglycemia is a predominantly metabolic feature of diabetes and can trigger various macrovascular and microvascular-related complications. As a common and serious chronic complication of diabetes, DFU remains an unsolved health problem due to the high mortality and disability rates, with a poignant amputation being performed approximately every 30 s worldwide (Boulton et al. 2005). To develop a new and effective strategy to treat DFU is urgently needed. Decreased levels of netrin-1 had been observed in diabetic patients (Liu et al. 2016). Importantly, increasing evidences have corroborated the protective role of netrin-1 expression against diabetes-induced complications such as diabetic nephropathy and myocardial infarction (Tak et al. 2013, Ke et al. 2014). To date, no data are available on its function in diabetic complications. Previous researches have revealed a protective role of netrin-1 against ischemia/reperfusion kidney injury and cardiac injury (Tak et al. 2013, Siu et al. 2015). Importantly, ectopic expression of netrin-1 exerts a benefit effect on repair impairment in diabetes-induced myocardial infarction and diabetic nephropathy, making it as a potentially promising agent against diabetic complication (Tak et al. 2013, Ke et al. 2014). To further elucidate the role of netrin-1 in DFU, we investigated its function in vascular endothelial cell dysfunction under high glucose exposure. As expected, high glucose treatment inhibited netrin-1 expression in HUVECs. Importantly, upregulation of netrin-1 ameliorated high glucose-inhibited cell viability and suppressed high glucose-increased cell apoptosis. Simultaneously, the release of LDH induced by high glucose, a marker for cell injury, was also reduced after netrin-1 overexpression concomitant with MDA decrease, an indicator to estimate reactive oxygen species (ROS)-induced cell injury upon high glucose. These results suggest that netrin-1 elevation may protect against HUVEC injury in response to high glucose.

Impaired vasculogenesis is widely recognized to be a key contributor to delayed wound healing (Ruzehaji et al. 2014, Zhou et al. 2017). We, therefore, next investigated the angiogenic function of netrin-1 in HUVECs stimulated with high glucose. Intriguingly, ectopic expression of netrin-1 restored the inhibitory effects of high glucose on cell migration and tube formation. Concomitantly, netrin-1 also elevated the production of VEGF, a pro-angiogenic cytokine, under high glucose. A previous study also proved an essential role of netrin-1 in angiogenesis of rat placenta (Xie et al. 2011). Analogously, netrin-1 expression can improve capillary formation and blood vessel density in mice with diabetic myocardial infarction (Ke et al. 2014). Hence, these observations provoke us to conclude that overexpression of netrin-1 may facilitate wound healing of DFU by ameliorating endothelial
dysfunction by restoring the impairment of cell growth and vascularization.

Cumulatively, abundant researchers agree that the PI3K/AKT pathway possesses a critical role in wound healing under diverse pathological conditions including hyperglycemia (Liu et al., 2014, Zhu et al., 2014). Once activated, the phosphorylation of AKT can directly phosphorylate eNOS and induce the subsequent production of NO (Yao et al., 2016). eNOS convincingly acts as a pivotal regulator of vascularization by mediating NO generation. To clarify the molecular mechanism involved in the protective role of netrin-1 against high glucose-induced endothelial dysfunction, we explored the activation of PI3K/AKT-eNOS signaling. Within agreement with this hypothesis, elevation of netrin-1 attenuated the decrease in the phosphorylation of AKT and eNOS when exposed to high glucose, as well as increased NO levels. As a critical and potent vasodilator, NO released by endothelia can maintain vascular integrity of normal blood vessels and its decrease results in vascular malfunction during the progression of insulin resistance (Zhu et al., 2014). Moreover, the deficiency of NO accounts for the damaged vascular regeneration in diabetic ischemic injury animal model (Yan et al., 2009). Further analysis confirmed that blocking the PI3K/AKT or eNOS pathway attenuated the restored potential of netrin-1 elevation in cell growth and pro-angiogenic impairment under conditions of high glucose exposure.

Collectively, this study demonstrated the decrease of netrin-1 levels in patients with DFU. More importantly, overexpression of netrin-1 could antagonize endothelial dysfunction by restoring cell injury and impaired angiogenesis upon high glucose exposure by regulating the PI3K/AKT-eNOS signaling. Therefore, this study highlights netrin-1 as a potentially promising agent for wound healing of diabetic vascular complications, including DFU. Emerging studies have verified the critical role of augmented inflammatory response in the pathological process of diabetic vascular complications (Tuttolomondo et al., 2015, Afarideh et al., 2016, Wu & Chen 2016). Recently, several studies have corroborated that netrin-1 exerts the critical roles in the progression of inflammatory diseases (Podjaski et al., 2015, Mediero et al. 2016). Accordingly, further studies will focus on the effect of netrin-1 on the inflammatory response to hyperglycemia in vitro and DFU model.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This work did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

References
Mohamed R, Jayakumar C, Ranganathan PV, Ganapathy V & Ramesh G 2012 Kidney proximal tubular epithelial-specific overexpression of
Netrin-1 restores endothelial dysfunction.

Y Xing, J Lau, X Liu and others

Son TW, Yun SP, Yong MS, Seo BN, Ryu JM, Youn HY, Oh YM & Han HJ 2013 Netrin-1 protects hypoxia-induced mitochondrial apoptosis through HSP27 expression via DCC- and integrin alpha6beta4-dependent Akt, GSK-3beta, and HSF-1 in mesenchymal stem cells. *Cell Death and Disease* **4** e636. (doi:10.1038/cddis.2013.94)

Received in final form 17 February 2017
Accepted 1 March 2017