Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways

Ozlem Erdogdu*, Linnéa Eriksson*, Hua Xu1, Åke Sjöholm, Qimin Zhang and Thomas Nyström

Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset AB, SE-118 83 Stockholm, Sweden
1Department of Pathophysiology, Ningxia Medical University, Yinchuan, Ningxia 750004, People’s Republic of China
*(O Erdogdu and L Eriksson contributed equally to this work.)

Correspondence should be addressed to T Nyström
Email thomas.nystrom@sodersjukhuset.se

Abstract

Experimental studies have indicated that endothelial cells play an important role in maintaining vascular homeostasis. We previously reported that human coronary artery endothelial cells (HCAECs) express the glucagon-like peptide 1 (GLP1) receptor and that the stable GLP1 mimetic exendin-4 is able to activate the receptor, leading to increased cell proliferation. Here, we have studied the effect of exendin-4 and native GLP1 (7–36) on lipoapoptosis and its underlying mechanisms in HCAECs. Apoptosis was assessed by DNA fragmentation and caspase-3 activation, after incubating cells with palmitate. Nitric oxide (NO) and reactive oxidative species (ROS) were analyzed. GLP1 receptor activation, PKA-, PI3K/Akt-, eNOS-, p38 MAPK-, and JNK-dependent pathways, and genetic silencing of transfection of eNOS were also studied. Palmitate-induced apoptosis stimulated cells to release NO and ROS, concomitant with upregulation of eNOS, which required activation of p38 MAPK and JNK. Exendin-4 restored the imbalance between NO and ROS production in which ROS production decreased and NO production was further augmented. Incubation with exendin-4 and GLP1 (7–36) protected HCAECs against lipoapoptosis, an effect that was blocked by PKA, PI3K/Akt, eNOS, p38 MAPK, and JNK inhibitors. Genetic silencing of eNOS also abolished the anti-apoptotic effect afforded by exendin-4. Our results support the notion that GLP1 receptor agonists restore eNOS-induced ROS production due to lipotoxicity and that such agonists protect against lipoapoptosis through PKA-PI3K/Akt-eNOS-p38 MAPK-JNK-dependent pathways via a GLP1 receptor-dependent mechanism.

Key Words
- Endothelial nitric oxide synthase
- Exendin-4
- GLP1
- Human coronary endothelial cells
- Lipoapoptosis

Introduction

Type 2 diabetes and insulin resistance are associated with atherosclerosis, which is the major cause of morbidity and mortality in these patients. Experimental studies have indicated that the vascular endothelium plays an important role in maintaining the balance between vasoconstriction and vasodilatation, coagulation and fibrinolysis, proliferation, and apoptosis (Furchgott & Vanhoutte 1989). Damage of vascular cells by proatherosclerotic risk factors, such as lipids and inflammatory cytokines, might be an early marker for the development of atherosclerosis and vascular complications (Verma et al. 2003). Several studies have reported that free fatty acids (FFAs) impair the
Glucagon-like peptide-1 (GLP1) is a brain gut insulino-
tropic hormone that plays an important role in the
regulation of glucose homeostasis and thus has been
applied in clinical treatment of diabetes (Drucker & Nauck
2006). Exendin-4, a stable incretin mimetic and GLP1
receptor agonist, has been shown to promote glucose-
dependent insulin secretion in vitro (Parkes et al. 2001).
Besides its insulino-tropic action, exendin-4 may also exert
direct beneficial effects on endothelial function. Exendin-4
reduces macrophage adhesion to the endothelium, an
early step in the formation of atherosclerotic plaques and
endothelial dysfunction (Arakawa et al. 2010). Acute
administration of exendin-4 in humans prevents en-
do-thelial dysfunction induced by ischemia reperfusion
injury (Ha et al. 2011) and after a high-fat meal load
(Koska et al. 2010), effects suggested to be GLP1 receptor
and NO dependent (Nyström et al. 2004).

We previously reported that human coronary artery
endothelial cells (HCAECs) express the GLP1 receptor
and that exendin-4 is able to activate the receptor, leading to
increased cell proliferation, involving the eNOS pathway
(Erdoğdu et al. 2010). GLP1 has also been described as an
anti-apoptotic factor in different cells, including cardio-
myocytes (Ravassa et al. 2011), neuronal cells (Li et al.
2009), and vein endothelial cells (Schisano et al. 2012,
Shiraki et al. 2012). The aim of our study was to investigate
the putative protective effect of exendin-4 and GLP1
against lipoapoptosis of HCAECs and attempt to address
the pathways involved in imparting such an effect.

Materials and methods

Cell culture and incubation

Normal primary HCAECs isolated from normal human
coronary arteries (passage 5–13) obtained from Clonetics
(Lonza, Walkersville, MD, USA) were grown in EGM-2 MV
medium supplemented with hydrocortisone, human
edemal growth factor, 5% FBS, vascular endothelial

integrity of the endothelial monolayer and its barrier
function, leading to enhanced endothelial apoptosis (Chai &
Liu 2007, Artwohl et al. 2008), a key factor contributing
to endothelial dysfunction (Dimmel er et al. 2002). Nitric
oxide (NO) is the single most important factor for
maintaining endothelial function, and mice with a
deletion of the gene for endothelial NO synthase (eNOS)
show accelerated atherosclerosis (Kuhlencordt et al. 2001).

Circulating FFAs interfere with eNOS (Steinberg
et al. 2003). 2006). Exendin-4, a stable incretin mimetic and GLP1
receptor agonist, has been shown to promote glucose-
dependent insulin secretion (Nystro¨ m et al. 2010), effects suggested to be GLP1 receptor
and NO dependent (Nyström et al. 2004).

To examine the effect of exendin-4 on apoptosis,
eNOS, and Akt phosphorylation, HCAECs were grown to
90% confluence, followed by incubation overnight in
serum-deficient EGM medium containing 0.5% FBS and
2 mM l-glutamine. l-NG-nitroarginine methyl ester
hydrochloride (i-NAME) (1 mM), LY294002 (1 μM),
Rp-cAMP[S] (10 μM), p-38 MAPK inhibitor SB203580
(10 μM), JNK inhibitor SP600125 (5 μM), Akt inhibitor IV
(0.5 μM), (6R)-5,6,7,8-tetrahydropterin dihydrochlor-
ide (BH4) (10 μM), and (±)-6-hydroxy-2,5,7,8-tetra-
methylchromane-2-carboxylic acid (Trolox) (1 mM) or
vehicle were added 1 h before palmitate (125 μM,
a concentration that has recently been demonstrated to
induce apoptosis (Artwohl et al. 2008)), and exendin-4
stimulation and continuously present during the 24-h
incubation. All materials, unless stated, were purchased
from Sigma–Aldrich.

NO measurement

Direct measurements of NO release from HCAECs were
performed using the cell-impermeable fluorescence
indicator DAF-2 as described (Nakatsubo et al. 1998).

Cells were incubated in 12-well plates in the presence or
absence of palmitate with/without exendin-4 or vehicle in
the serum-deficient medium for 24 h. The cells were
subsequently washed twice in KRB containing in (mM)
135 NaCl, 3.6 KCl, 5 NaHCO3, 0.5 NaH2PO4, 0.5 MgCl2,
1.5 CaCl2, and 10 HEPES, pH 7.4, followed by an
icubation with 5 μM DAF-2 in 0.5 ml KRB for 2 h, at
37 °C, using the eNOS substrate i-arginine (100 μM) as
potent negative control. At the end of the incubation, superna-

tants were transferred into black microplates and the
fluorescence was measured with a fluorescence microplate
reader Infinite M200 (Tecan Group Ltd., Männedorf,
Germany) at excitation wavelength of 488 nm and
emission 515 nm. Results were normalized to the protein
concentrations determined using BCA kits after the cells
in each well were lysed in a lysis buffer containing in (mM)
80 Na2HPO4, 20 NaH2PO4, 100 NaCl, and 1% Triton
X-100, pH 7.5.
Western blot analysis

Western blotting was applied to quantify the total and phosphorylated eNOS (Ser1177), Akt 1/2/3 (Ser473), p38 MAPK (Thr180/Tyr182), or JNK (Thr183/Tyr185) proteins and performed as described previously (Zhang & Hintze 2006).

Measurement of intracellular reactive oxygen species

Intracellular reactive oxygen species (ROS) levels were measured using Image-iT LIVE Green Reactive Oxygen Species Detection Kit (Molecular Probes, Life Technologies Europe BV) as described previously (Suh et al. 2010). Briefly, the assay is based on 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA), a fluorogenic marker that will be cleaved upon the presence of ROS. HCAECs were seeded into six-well plates. When reaching 80% confluence, cells were first kept overnight in serum-deficient EGM medium containing 0.5% FBS and 2 mM l-glutamine followed by a 24-h incubation in the presence or absence of palmitate or vehicle, with or without exendin-4. Cells were then washed with Hank’s balanced salt solution (HBSS) before adding 50 μM carboxy-H2DCFDA to each well. After 30 min of incubation at 37 °C, excess probe was removed by washing the cells again with HBSS. HCAECs were then lysed in PBS containing 1% Triton X-100. Carboxy-DCF fluorescence in cell lysates was detected at an excitation/emission wavelength of 495/529 nm using a microplate reader (Tecan Group Ltd.). The fluorescence intensity was normalized against the protein concentration of each individual well.

Determination of caspase-3 activity

Caspase-3 activity, as a measure of apoptosis, was determined using a fluorometric substrate, Z-DEVD-AMC (EnzChek Caspase-3 assay kit Molecular probes, Life Technologies Europe BV) as described previously (Lincz 1998). Twenty-four hours after stimulation with palmitate or vehicle w/wo exendin-4, cells were incubated in 50 μl Z-DEVD-AMC substrate at room temperature for 30 min. Substrate cleavage was quantified fluorometrically at 342 nm excitation and 441 nm emission with a fluorescent plate reader (Tecan Group Ltd.).

DNA fragmentation

DNA fragmentation, another marker of apoptosis, in HCAECs was assayed by the cell death detection kit ELISA plus (Roche Diagnostics Scandinavia AB), according to the manufacturer’s instructions. The ELISA measures cytoplasmic DNA-histone complexes that increase after apoptosis-associated DNA fragmentation.

![Graphs and images](http://jme.endocrinology-journals.org/C209)

Figure 1

Exendin-4 blocks increased apoptosis induced by palmitate in HCAECs. Lipoapoptosis depends on the exposure time (A). Caspase-3 activation (B) and DNA fragmentation (C) measured in HCAECs exposed to palmitate (125 μM) for 24 h, alone or in combination with different concentrations of exendin-4 (0.1–10 nM). Results are normalized by protein concentration in the incubation wells and expressed as mean percentage of control ± S.E.M. *P<0.05 for a chance difference vs controls by ANOVA, **P<0.05 vs palmitate. Results derived from seven (A and B) or six (C) independent experiments are shown.

Please note that the graphs and images in the original text are not reproduced here due to limitations in text-only representation.
Gene silencing

The cells were seeded into a 100 mm dish at a density of 2.5×10^5 cells per well and incubated for 24 h at 37 °C in complete medium. The cells were washed twice with culture medium without serum and supplement. Control siRNA/eNOS siRNA (10 nM) was mixed and incubated with SilenceMag according to the standard protocol (Oz Biosciences, Marseille, France). After incubation with a magnetic field for 15 min, the magnet was removed from the culture plate. Eight to twenty-four hours post-transfection, the media in the cell culture plate were replaced with complete medium containing 5% FBS and then further incubated for 24 h. The cells were harvested and centrifuged at 200 g for 2 min to remove the supernatant.

Isolation of total RNA and real-time PCR

Total RNA was extracted from HCAECs treated with eNOS siRNA and control siRNA, using Aurum Total RNA Mini kit Bio-Rad, according to the manufacturer’s instructions. cDNA was prepared using Script cDNA Synthesis kit, Bio-Rad (Life Science Research). The PCR mixture contained, in a final volume of 20 µl, 4 µl cDNA, 10 µl KAPA SYBR FAST qPCR mastermix (Kapa Biosystems, Woburn, MA, USA), and corresponding primers. The gene expression level was normalized to the housekeeping gene, β-actin.

Statistical analyses

Each assay was repeated a minimum of three times. All data are presented as mean ± S.E.M. Statistical analyses of differences between groups were performed by one-way and two-way ANOVA followed by the post hoc tests Student–Newman–Keuls and Dunn–Bonferroni.

Results

Exendin-4 decreases HCAEC lipoapoptosis (caspase-3 activation and DNA fragmentation)

As shown in Fig. 1A, lipoapoptosis depends on its exposure time, cells incubated with 125 µM palmitate for 24 h in serum-deficient EGM medium (containing 0.5% FBS and 2 mM l-glutamine) exhibited the most significant increase in DNA fragmentation compared with other time points, as well as the control cells. All subsequent experiments were therefore conducted using 125 µM palmitate over 24 h. By contrast, palmitate-exposed cells co-incubated with exendin-4 at various concentrations (0.1–10 nM) displayed a tendency to decrease caspase-3 activation compared with cells incubated with palmitate alone; however, the difference was not statistically significant (Fig. 1B). All experiments were conducted using 125 µM palmitate over 24 h. Figure 1C shows that DNA fragmentation was also increased in HCAECs incubated with 125 µM palmitate compared with control cells. This increase was blunted when cells were co-incubated with 10 nM exendin-4 (Fig. 1C).

Exendin-4 and GLP1 protect HCAECs from palmitate-induced apoptosis via a GLP1 receptor-dependent pathway

Many effects of GLP1 on the heart and the endothelium appear to be due to the formation of the DPP-4 metabolite GLP1 (9–36) (Ban et al. 2008, Nathanson et al. 2009). In order to examine whether the effects of exendin-4 were conveyed through a GLP1 receptor-dependent pathway, we introduced GLP1, its major metabolite GLP1 (9–36), and the GLP1 receptor antagonist exendin (9–39). Incubating the cells with palmitate and exendin-4 in the

![Figure 2](http://jme.endocrinology-journals.org/C209)

Figure 2
The protective effect of exendin-4 and GLP1 against lipoapoptosis is mediated through the GLP1 receptor. DNA fragmentation measured in HCAECs stimulated w/v/o palmitate (125 µM) for 24 h in the presence or absence of the indicated peptides (exendin-4, 10 nM; exendin (9–39), 10 nM; GLP1 (7–36), 100 nM, added every 12 h; GLP1 (9–36), 100 nM). Results are expressed as mean percentage of control ± S.E.M. *P < 0.05 vs control; #P < 0.05 vs palmitate. Results derived from 4 to 11 independent experiments are shown.
presence of GLP1 receptor antagonist exendin (9–39) led to loss of exendin-4 protection against lipoapoptosis (Fig. 2). Incubation of the cells with GLP1 also protected against palmitate-induced apoptosis but with a greater potency than that conferred by exendin-4. Interestingly, the GLP1 (9–36) metabolite was not able to protect the HCAECs against apoptosis (Fig. 2).

The anti-apoptotic action of exendin-4 is mediated by activation of PKA- and PI3K/Akt-dependent signaling pathways

Most of the activities initiated by binding of exendin-4 to its receptor on the surface of cells are mediated by an elevation in intracellular cAMP levels and PKA activity. We therefore examined whether blocking PKA activation countered the anti-apoptotic effect imposed by exendin-4. Cells were incubated with 125 μM palmitate for 24 h in the presence or absence of 10 μM Rp-cAMP[S], a specific inhibitor of PKA, and the extent of apoptosis was analyzed (Fig. 3A). Incubating the cells with Rp-cAMP[S] alone did not affect cellular apoptosis. However, when cells were incubated with palmitate and exendin-4 in the presence of Rp-cAMP[S], the anti-apoptotic action of exendin-4 was completely lost (Fig. 3A), indicating that the protective effect of exendin-4 against lipoapoptosis requires cAMP/PKA activation. In order to address whether cAMP could mimic the effect of exendin-4, we introduced a PKA agonist, Sp-cAMP[S]. Consistent with the above results, Sp-cAMP[S] blocked the increase in apoptosis induced by palmitate with an efficacy similar to that of exendin-4 (Fig. 3B). As we recently showed that exendin-4 activates eNOS through Akt phosphorylation in HCAECs (Erdogdu et al. 2010), we investigated whether palmitate exerts any effect on basal and exendin-4 stimulated Akt activation, a downstream kinase of the PI3K pathway, which was monitored by phosphorylation at Ser473. We observed that, while palmitate alone had no effects on Akt phosphorylation at Ser473, exendin-4 enhanced Akt phosphorylation at Ser473 (Fig. 4A). By contrast, incubating the cells with palmitate caused a slight, but statistically significant, increase in Akt protein expression. In addition, exposure to both palmitate and exendin-4 further augmented expression of Akt (data not shown). We next examined the role of PI3K and Akt in the prevention of apoptosis. Cells were incubated with 125 μM palmitate in the presence or absence of LY294002 and Akt IV (which are selectively blocking PI3K and Akt respectively) and the extent of apoptosis was analyzed. LY294002 and Akt IV alone did not affect cellular apoptosis. However, both LY294002 (Fig. 4B) and Akt IV (Fig. 4C) countered the protection against the DNA fragmentation induced by palmitate, indicating that this anti-apoptotic effect of exendin-4 involves PI3K/Akt signaling pathways.

Figure 3
PKA involvement in the protective effect of exendin-4 against lipoapoptosis. Cells were incubated for 24 h with palmitate (125 μM) and/or the PKA antagonist Rp-cAMP[S] (A, 10 μM) or the PKA agonist Sp-cAMP[S] (B, 10 μM) in the presence or absence of exendin-4 (10 nM). Results are expressed as mean percentage of control ± S.E.M. *P<0.05 vs control; *P<0.05 vs palmitate. Results derived from five to six independent experiments (each in duplicate) are shown.
Palmitate enhances basal eNOS phosphorylation

To determine whether palmitate and exendin-4 (alone and in combination) influences eNOS activity, we examined activation, in a time course manner up to 24 h, of the enzyme by measuring its phosphorylation at Ser1177. As shown in Fig. 5A, enhanced phosphorylation of eNOS was observed already after 10 min and further on with palmitate. By contrast, exendin-4 enhanced eNOS activation after 30 min with a decreased activation after 24 h (Fig. 5A). Entirely consistent with the above findings, NO production by the HCAECs was significantly enhanced by palmitate (Fig. 5B). Furthermore, co-incubation of the cells with palmitate and exendin-4 further augmented NO production, approaching the effect produced by the eNOS substrate L-arginine (Fig. 5B).

Exendin-4 decreases palmitate-induced ROS production

As it is known that oxidative stress can elicit apoptosis, we decided to examine the influence of palmitate and exendin-4 on intracellular ROS production in the HCAECs. The cellular ability to produce ROS was measured by DCF fluorescence. This reaction is mainly started by hydrogen peroxide (Royall & Ischiropoulos 1993). Similarly, as in the case of apoptosis, palmitate was found to increase DCF fluorescence compared with control cells. However, this enhancement was decreased when cells were incubated with exendin-4 (Fig. 5C). We next incubated cells with the essential reduced cofactor BH4, a key factor in eNOS catalysis, i.e. the ratio between reduced and oxidized BH4 tightly control ROS formation. Restoration of BH4 also, to some extent, reduced ROS production (Fig. 5D) to the same level as observed by exendin-4 (Fig. 5C).

Protective effect of exendin-4 against lipoapoptosis is mediated by eNOS activation

We next investigated whether blocking eNOS activation affected the anti-apoptotic effect of exendin-4. Cells were incubated with palmitate for 24 h in the presence or absence of the eNOS inhibitor L-NAME (1 mM) and rates of
apoptosis was analyzed (Fig. 5E). We have previously shown that l-NAME, at this concentration, effectively blocks eNOS activity and NO formation in these cells (Erdogdu et al. 2010). l-NAME alone did not affect cellular apoptosis and it did not modify palmitate-induced apoptosis. However, when cells were incubated with palmitate and exendin-4 in the presence of l-NAME, the incretin mimetic failed to prevent the increase in apoptosis induced by palmitate (Fig. 5E). To further corroborate the hypothesis that eNOS plays an important role in preventing lipoapoptosis, eNOS in HCAECs was silenced by siRNA. We transfected HCAECs with siRNA specific for eNOS or non-specific control (Lee et al. 2011). Knockdown of eNOS to 45% was observed by real-time PCR. As shown in Fig. 5F and G, the protective effect of exendin-4 on palmitate-induced apoptosis was completely abolished by the eNOS siRNA. These findings altogether indicate that the protective effect of exendin-4 against lipoapoptosis in HCAECs is mediated by eNOS activation.

Exendin-4 inhibits palmitate-induced activation of p38 MAPK and JNK

p38 MAPK and JNK are involved in stress responses by regulating many cellular functions. As p38 MAPK and JNK have been demonstrated to be involved in the development of insulin resistance and cardiovascular diseases (Seeger et al. 2005), we examined the effect of palmitate on all three major MAPKs (p38 MAPK, JNK, and ERK1/2) because all are involved in the regulation of cell survival and apoptosis. p38 MAPK and JNK can be activated by phosphorylation at Thr\(^{180}/\text{Tyr}^{182}\) and Thr\(^{183}/\text{Tyr}^{185}\)
respectively, thereby regulating its catalytic activity. As shown in Fig. 6A and B, palmitate caused a significant increase in both p38 MAPK and JNK phosphorylation compared with control cells. This increment was significantly reduced by co-incubation with palmitate and exendin-4. However, incubating the cells with palmitate with/without exendin-4 did not significantly alter the phosphorylation of ERK1/2 (data not shown).

The anti-apoptotic effect of exendin-4 is mediated by p38 MAPK- and JNK-dependent mechanisms

We next examined whether blocking p38 MAPK activation affected the protective effect of exendin-4 against lipoapoptosis. HCAECs were incubated with 125 μM palmitate for 24 h in the presence or absence of 10 μM SB203580, a specific inhibitor for p38 MAPK, and the extent of apoptosis was analyzed (Fig. 7A). As mentioned previously, palmitate induced a robust increase in apoptosis, which was attenuated by exendin-4. However, SB203580 alone significantly reduced cellular apoptosis. SB203580 at 10 μM abolished some of the palmitate-induced apoptosis. By contrast, when cells were incubated with palmitate and exendin-4 in the presence of SB203580, the anti-apoptotic effect of exendin-4 was blocked by co-incubation with SB203580. As JNK has also been shown to mediate cellular apoptosis, we examined whether blocking JNK activation by SP600125, a specific inhibitor for JNK, also abolished the protective effect of exendin-4 on palmitate-induced apoptosis. Our results indicate that, in the presence of SP600125, exendin-4 failed to prevent the increase in apoptosis induced by palmitate (Fig. 7B). We next incubated cells with both SB203580 (10 μM) and SP600125 (5 μM), which nearly completely abolished the induced apoptosis (Fig. 7C). Finally, we used an antioxidant (Trolox) that completely inhibited ROS production (Fig. 7D), with no such effect on apoptosis (Fig. 7E). However, our results indicate that, in the presence of SB203580 and SP600125, exendin-4 failed to prevent the increase in apoptosis induced by palmitate (Fig. 7C). Taken together, these data suggest that the anti-apoptotic effect of exendin-4 is dependent on p38 MAPK and JNK activities, however not necessarily due to oxidative stress.

Discussion

The main findings of this study are as follows: long-term exposure of HCAECs to palmitate induces apoptosis, eNOS activity, ROS release, and production of NO. Exendin-4 and GLP1, but not the degradation metabolite GLP1 (9–36), confer protection against this lipoapoptosis. The anti-apoptotic effect of exendin-4 is mediated through the GLP1 receptor and involves PKA-, PI3K-, eNOS-, p38 MAPK-, and JNK-dependent pathways. Elevated levels of circulating FFAs frequently seen in patients with type 2 diabetes (Chai & Liu 2007) are suggested to decrease NO bioactivity, either by increased destruction or an impaired eNOS activity. As endothelial dysfunction is tightly coupled to a decrease in NO
bioavailability (Harrison 1997), we would have expected palmitate to downregulate eNOS activity (Kim et al. 2005, Wang et al. 2006). Paradoxically, eNOS phosphorylation was robustly increased in HCAECs exposed to palmitate. Accordingly, NO production was also increased by palmitate and so was the release of ROS. Notably, a number of studies have demonstrated that NO release is increased under diabetic conditions (Xu & Zou 2009). It was recently shown that palmitate stimulates ROS production in aortic endothelial cells through PKC-dependent activation (Inoguchi et al. 2000). Usually, ROS are scavenged through multiple defense mechanisms, and excessive levels of ROS can impede these systems and promote breakdown NO, thereby exacerbating the oxidative stress (Tesfamariam & Cohen 1992, Cosentino et al. 1997). In hyperlipidemic conditions, any of the three NOS enzymes might yield superoxide anion (usually referred to uncoupling of eNOS), known to react rapidly with NO, leading to production of the highly pro-oxidant peroxynitrite (Zou et al. 2004). Peroxynitrite is known to be toxic and triggers many different cellular responses including apoptosis of the cells (Laursen et al. 2001, Zou et al. 2004). It was recently demonstrated that treatment of human aortic endothelial cells with high concentrations of glucose increases the eNOS expression (due to uncoupling of this enzyme) and subsequently causes oxidative stress (Cosentino et al. 1997). Moreover, short-term exposure to a triglyceride-rich fat emulsion, mimicking the elevated FFAs in our current in vitro work, impairs endothelium-dependent vasorelaxation, with a concomitant increase in eNOS activity in rat conduit artery rings ex vivo (Nathanson et al. 2009). Our results confirm the above and previous suggestions, i.e. palmitate induces an imbalance between NO and ROS release, and that the enhancement of eNOS activity might be due to uncoupling of this enzyme. One causative factor for eNOS
uncoupling is a deficient amount of the essential cofactor of eNOS, i.e. BH4 (Verhaar et al. 2004). Supporting that notion, eNOS activity was substantially decreased by exendin-4 treatment in our study, with a concomitant reduction in ROS levels and mimicked by BH4 restoration. By contrast, prolonged exposure of the HCAECs to exendin-4 further augmented NO production, a crucial factor in regulation and coordination of endothelial function and apoptosis (Calles-Escandon & Cipolla 2001).

GLP1 and its derivates have previously been assigned an anti-apoptotic role in murine HL-1 cardiomyocytes (Ravassa et al. 2011), pancreatic β-cells (Cunha et al. 2009, Kim et al. 2010), and neuronal cells (Li et al. 2009). Very recently, it was also shown that exendin-4 protects pancreatic β-cells against lipoapoptosis by interfering with the JNK signaling pathway. Recent studies have revealed differential effects of exendin-4 and GLP1 on vascular functions (Ban et al. 2008, Nathanson et al. 2009), suggesting the existence of a signaling pathway independent of the classical GLP1 receptor. To this end, we attempted to address whether the anti-apoptotic effect of exendin-4 was mediated by the GLP1 receptor using the GLP1 receptor antagonist exendin (9–39). The anti-apoptotic effect induced by exendin-4 was indeed abolished by the GLP1 receptor antagonist, thus suggesting GLP1 receptor-dependent action of the peptide. Interestingly, the major metabolite GLP1 (9–36), which possesses no affinity to the classical GLP1 receptor (Knudsen & Pridal 1996, Ban et al. 2008), failed to reduce palmitate-induced apoptosis in HCAECs, adding further credence in favor of the view that the protective effect of exendin-4 is mediated through the known GLP1 receptor in these cells. It was previously reported that most effects of GLP1 are mediated through activation of cAMP/PKA signaling (Brubaker & Drucker 2004). Using a PKA inhibitor and activator, we show that PKA activation is both sufficient and required for exendin-4 to confer its protective actions. Thus, stimulation of the PKA pathway by exendin-4 may convey the protective effect of the peptide against lipoapoptosis in HCAECs.

Further downstream the PI3K/Akt pathway is known to be involved in protection from apoptosis in different cell types (Piro et al. 2008). Akt plays a crucial role in insulin signaling and its suppression can lead to both insulin resistance and apoptosis (Piro et al. 2008). By contrast, palmitate did not influence Akt phosphorylation in the current work. The addition of exendin-4 significantly enhanced phosphorylation of Akt and decreased the amount of apoptotic cells. Furthermore, the anti-apoptotic effect of exendin-4 was prevented when endothelial cells were cultured with LY294002 and Akt inhibitor IV respectively, suggesting that exendin-4 requires activation of the PI3K/Akt pathway to protect HCAECs from lipoapoptosis. Consistent with our findings, previous findings in other cell types also indicate that the anti-apoptotic actions of GLP1 are mediated through a PI3K-dependent signaling pathway (Kimura et al. 2009).

eNOS plays a pivotal role in endothelial cell proliferation and survival (Calles-Escandon & Cipolla 2001). This enzyme is activated by exendin-4 through phosphorylation, leading to enhanced NO production and this effect is dependent on the activation of the PI3K/Akt pathway (Erdogdu et al. 2010). In addition, eNOS can also be activated by PKA or Akt, resulting in increased NO production (Schulz et al. 2005). Previous work has indicated that the activity of eNOS is diminished in endothelial apoptosis induced by multiple proapoptotic factors (Dimmeler & Zeiher 1999). By contrast, we demonstrated in this study that paradoxically increased eNOS activity is associated with enhancement of lipoapoptosis and that co-incubation with exendin-4 attenuated this proapoptotic effect of palmitate. The anti-apoptotic effect of exendin-4 was abolished when HCAECs were cultured with l-NAME. In addition, genetic silencing of transfection of eNOS abrogated the protective effect of exendin-4 against lipoapoptosis, demonstrating that the anti-apoptotic action of exendin-4 is also mediated by an eNOS-dependent pathway in the HCAECs.

Recently, it was reported that high levels of ROS not only damage cells by oxidizing DNA and protein but also indirectly damage cells by activating a variety of stress-sensitive intracellular signaling pathways, such as p38 MAPK and JNK (Klaunig et al. 2010). In the current study, palmitate increased the phosphorylation of both p38 MAPK and JNK and apoptosis in HCAECs. Furthermore, co-incubation of the cells with exendin-4 significantly decreased the phosphorylation levels of these kinases, with a concomitant reduction in endothelial cell apoptosis. That inhibition of p38 MAPK and JNK with specific inhibitors completely abolished the proapoptotic effects of palmitate, suggesting that palmitate induces apoptosis in HCAECs through p38 MAPK- and JNK-dependent pathways. This finding is consistent with a recent report demonstrating that palmitate also triggers cytokine secretion via both p38 MAPK and JNK pathways in differentiated THP-1 cells, a model of human macrophages (Haversen et al. 2009). Recently, it was also shown that exendin-4 protects β-TC6 insulinoma cell line against lipoapoptosis by interfering with the JNK signaling pathway (Xiang et al. 2012). It has also been reported that p38 MAPK activation alone...
accounts for palmitate-induced apoptosis in HCAECs (Chai & Liu 2007). Interestingly, the anti-apoptotic effect of exendin-4 was also abolished by specific inhibitors of p38 MAPK and JNK, indicating that activation of these kinases not only contributes to increased lipoapoptosis but also that their suppression plays an important role in HCAEC survival caused by exendin-4. In the current study, the antioxidant Trolox inhibited palmitate-induced ROS production, similar to the inhibitors of p38 MAPK and JNK kinases. Surprisingly, Trolox did not evoke any anti-apoptotic actions. Reason for that is not clear; however, we cannot exclude that other ROS are behind the involvement of p38 MAPK and JNK kinases upon apoptosis. Recently, it was demonstrated that exendin-4 inhibits cytotoxic induced β-cell death via a decreased phosphorylation of both p38 MAPK and JNK, through PKA signaling pathways (Kawasaki et al. 2010), which is in line with our observation.

In conclusion, we demonstrate that palmitate activates eNOS to stimulate NO release and that p38 MAPK and JNK signaling pathways are involved in palmitate-induced ROS production and lipoapoptosis. Exendin-4 and GLP1 protect HCAECs against lipoapoptosis, which is mediated through the GLP1 receptor involving PKA-, eNOS-, p38 MAPK-, and JNK-dependent pathways. These effects, demonstrated in vitro, might serve to limit the adverse consequences of the macrovascular complications of type 2 diabetes as dysfunction of endothelial cells is believed to contribute to premature development of atherosclerosis.

Declaration of interest
T N has received consultancy fees from Eli Lilly. Å S has received research grants, consultancy fees, lecture honoraria, and fees for expert testimony from Eli Lilly.

Funding
Financial support was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and the Karolinska Institute and by the Swedish Society for Medical Research, the Swedish Society of Medicine, Stiftelsen Serafimerlasaretet, the Swedish Heart and Lung foundation, Eli Lilly Amylin Alliance, the European Foundation for the Study of Diabetes, Karolinska Institutet Foundations, and Stiftelsen Olle Engkvist Byggmästare.

Author contribution statement
All authors contributed to the study conception and design. Ö E, L E, H X, and Q Z conducted the study. All authors analyzed the data. Ö E, Å S, and T N wrote the first draft of the paper. L E conducted the additional experiments due to the revision. All authors commented and took part of the revision of the paper.

References
Lincz LF 1998 Deciphering the apoptotic pathway: all roads lead to death. Journal of Molecular Endocrinology 22 448–454. (doi:10.1530/jme-12-0166)

Received in final form 17 January 2013
Accepted 23 January 2013
Accepted Preprint published online 23 January 2013