hMRAPa specifically alters hMC4R molecular mass and N-linked complex glycosylation in HEK293 cells

Emma I Kay¹, Rikus Botha¹, Johanna M Montgomery¹ and Kathleen G Mountjoy¹,²
Departments of ¹Physiology ²Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Abstract

Human melanocortin 2 receptor accessory protein 1(hMRAPa) is essential for human melanocortin 2 receptor (hMC2R)-regulated adrenal steroidogenesis. hMRAPa enhances hMC2R N-linked glycosylation and maturation, promotes hMC2R cell surface expression and enables ACTH to bind and activate the MC2R. However, hMRAPa is predicted to have functions beyond its critical role in hMC2R activity. It is more widely expressed than the hMC2R and it has been shown to co-immunoprecipitate with all other hMCR subtypes and other G-protein-coupled receptors, when these are co-expressed with each receptor in heterologous cells. The physiological relevance of hMRAPa interactions with these receptors is unknown. We hypothesised that hMRAPa could influence post-translational processing and maturation of these receptors, similar to its actions on the hMC2R. Here we used co-immunoprecipitation and western blotting techniques to characterise effects of hMRAPa-FLAG co-expression on the maturation of each HA-tagged hMCR subtype and the HA-tagged human calcitonin receptor-like receptor (hCL), co-expressed in HEK293 cells. While hMRAPa-FLAG interacted with all five HA-hMCR subtypes and the HA-hCL, it only altered HA-hMC4R molecular mass. This altered HA-hMC4R molecular mass was due to a change in endoglycosidase H-resistant complex N-linked glycosylation, which we observed for HA-hMC4R in both intracellular and cell surface fractions. This effect was specific to the HA-hMC4R as hMRAPa did not alter the molecular mass of any of the other receptors that we examined. In conclusion, the specific effects of hMRAPa on hMC4R molecular mass and complex N-linked glycosylation provide evidence in support of a role for MRAPa in hMC4R functions.

Introduction

The melanocortin system performs a wide variety of physiological roles in human health and disease (Getting 2006). The human melanocortin 2 receptor (hMC2R) is unique amongst the melanocortin receptors, because it does not signal in response to ACTH stimulation in the absence of hMC2R accessory protein (hMRAP1). Human MRAP1 (MRAP) was discovered as a gene mutated in a rare autosomal disorder of ACTH resistance, known as familial glucocorticoid deficiency (FGD) type 2 (Metherell et al. 2005). Mutations in hMRAP1 underlie ~25% of FGD cases.
hMRAP1 is located on chromosome 21 and gives rise to two alternatively spliced hMRAP1 isoforms. The longer isoform, hMRAPa, is encoded by exons 1, 2, 3, 4 and 5 and the shorter isoform, hMRAPb, is encoded by exons 1, 2, 3, 4 and 6 (Metherell et al. 2005). hMRAP2, a paralog of hMRAP1, is located on chromosome 6 and its physiological function is unknown (Chan et al. 2009).

hMRAPa promotes hMC2R post-translational modification and maturation, cell surface expression and signalling in response to physiological ACTH concentrations (Roy et al. 2007, Sebag & Hinkle 2007, Webb et al. 2009). hMRAP2 promotes hMC2R cell surface expression, but, in contrast to hMRAPa, hMRAP2 only supports hMC2R signalling in response to supraphysiologic ACTH concentrations (Sebag & Hinkle 2010). hMRAPa and hMRAPb mRNA have been shown to be expressed in the adrenal gland and other tissues including human brain, testis, breast and skin by RT-PCR (Gardiner et al. 2002, Metherell et al. 2005). MRAPa expression was also identified in specific mouse brain regions including hippocampus and hypothalamus, using in situ hybridisation (Gardiner et al. 2002). hMRAP1 mRNA therefore has a broader tissue distribution than that of the hMC2R, which is primarily expressed in the adrenal and pituitary glands (Metherell et al. 2005, Cooray et al. 2008, Chan et al. 2009, Sebag & Hinkle 2009a,b). Hence, there has been intense interest in determining whether hMRAP1 proteins play roles in the functional expression of the other four widely expressed hMCR subtypes.

Both hMRAPa and hMRAP2 have been shown to co-immunoprecipitate with the hMC1R, hMC3R, hMC4R and hMC5R, but the effects of hMRAPs on the maturation and/or post-translational modification of these four hMCR subtypes were not examined (Chan et al. 2009). We hypothesise that hMRAPa may influence the maturation and/or post-translational modification of any of the hMCR subtypes in addition to the hMC2R. In this study, we have employed co-immunoprecipitation and western blotting techniques to examine the effects of hMRAPa on the molecular masses of all five hMCR subtypes, the human dopamine D2 receptor (hD2R) and human calcitonin receptor-like receptor (hCL), exogenously expressed in HEK293 cells.

Materials and methods

Construction of recombinant DNAs

N-terminal HA-tagged melanocortin receptor constructs and HA-tagged hD2R in pcDNA 3.1 were purchased from the Missouri S&T cDNA Resource Centre (Rolla, MO, USA). N-terminal FLAG-tagged human receptor activity-modifying protein 1 (RAMP1) and HA-tagged hCL (McLatchie et al. 1998) both in pcDNA 3.1 were gifts.

hMRAPa constructs hMRAPa cDNA (Ultimate ORF IOH58589 from Invitrogen Corporation) was recombined with pcDNA 3.2 using Gateway LR Clonase II (Invitrogen Corporation) and according to the manufacturer’s protocol. The hMRAPa insert was then transferred into pcDNA 3.1 to ensure that all of the hMRAPa constructs had the same expression backbone.

hMRAPa was amplified from hMRAPa in pcDNA 3.2 using the following primers: 5′-ATC GGA TCC ATG GCC AAC GGG ACC AAC-3′ (sense) and 5′-ATC GAA TTC TCA ATC CAG GTC-3′ (antisense). To subclone hMRAPa-FLAG, human ovary total RNA (Ambion, Inc., Austin, TX, USA; 2 μg) was reverse transcribed to cDNA with Superscript III reverse transcriptase (Invitrogen Corporation) and according to the manufacturer’s protocol. The hMRAPa insert was then transferred into pcDNA 3.1 to ensure that all of the hMRAPa constructs had the same expression backbone.

hMRAPa was amplified from hMRAPa in pcDNA 3.2 using the following primers: 5′-ATC GCC CAG AGG TTA AT-3′ (sense) and 5′-ATC GAA TCA ATC CAG GTC TGG TG-3′ (antisense). RT-PCR for both hMRAPa and hMRAPa-FLAG was performed using iProof High Fidelity DNA polymerase (Bio-Rad Laboratories) and the following conditions: denature (98 °C, 1 min; 98 °C, 5 s), anneal (60 °C, 30 s), elongate (72 °C, 10 s) for 35 cycles and then one elongation at 72 °C, for 7 min. hMRAPa and hMRAPa-FLAG were subcloned into pcDNA 3.1 (Invitrogen Corporation) using BamHI and EcoRI sites and the recombinant DNA was verified by sequencing. The coding sequences are aligned with GenBank accession number NM_178817.3.

hMRAP2 Human ovary total RNA (Clontech; 2 μg) was reverse transcribed to cDNA with Superscript III reverse transcriptase in a total volume of 20 μl and then 2 μl of cDNA were used to amplify hMRAP2-FLAG with the following primers: 5′-AGA GGT-3′ (antisense). To subclone hMRAP2-FLAG, human ovary total RNA (Ambion, Inc., Austin, TX, USA; 2 μg) was reverse transcribed to cDNA with Superscript III reverse transcriptase (Invitrogen Corporation) and according to the manufacturer’s protocol. The hMRAP2 insert was then transferred into pcDNA 3.1 to ensure that all of the hMRAP2 constructs had the same expression backbone.

hMRAP2 was amplified from hMRAP2-FLAG in pcDNA 3.2 using the following primers: 5′-AGA GGT-3′ (antisense). To subclone hMRAP2-FLAG, human ovary total RNA (Ambion, Inc., Austin, TX, USA; 2 μg) was reverse transcribed to cDNA with Superscript III reverse transcriptase (Invitrogen Corporation) and according to the manufacturer’s protocol. The hMRAP2 insert was then transferred into pcDNA 3.1 to ensure that all of the hMRAP2 constructs had the same expression backbone.

hMRAP2 was amplified from hMRAP2-FLAG in pcDNA 3.2 using the following primers: 5′-AGA GGT-3′ (antisense). To subclone hMRAP2-FLAG, human ovary total RNA (Ambion, Inc., Austin, TX, USA; 2 μg) was reverse transcribed to cDNA with Superscript III reverse transcriptase (Invitrogen Corporation) and according to the manufacturer’s protocol. The hMRAP2 insert was then transferred into pcDNA 3.1 to ensure that all of the hMRAP2 constructs had the same expression backbone.

hMRAP2 was amplified from hMRAP2-FLAG in pcDNA 3.2 using the following primers: 5′-AGA GGT-3′ (antisense). To subclone hMRAP2-FLAG, human ovary total RNA (Ambion, Inc., Austin, TX, USA; 2 μg) was reverse transcribed to cDNA with Superscript III reverse transcriptase (Invitrogen Corporation) and according to the manufacturer’s protocol. The hMRAP2 insert was then transferred into pcDNA 3.1 to ensure that all of the hMRAP2 constructs had the same expression backbone.
Cell culture and transfection

HEK293 human embryonic kidney cells were grown in DMEM supplemented with 10% (v/v) newborn calf serum and 1% (v/v) penicillin and streptomycin (Invitrogen Corporation) at 37 °C under 5% CO2. For transient transfections, 375,000 HEK293 cells/well were seeded into six-well plates. After 48 h when the cells were at 30–50% confluence, they were transfected with 1.5 μl of FuGENE 6 (Roche Applied Science) for every 0.5 μg of plasmid DNA, and then incubated for another 48 h at 37 °C under 5% CO2.

Co-immunoprecipitation and western blotting

HEK293 cells were transfected with HA-tagged G-protein-coupled receptors (GPCRs) plus hMRAPa-FLAG, FLAG-hRAMP1 or pcDNA 3.1. Forty-eight hours post-transfection, the cells were lysed in PBS+1% n-dodecyl-β-D-maltoside (Sigma–Aldrich Ltd.) and Complete mini protease inhibitors (Roche Applied Science). Each cell lysate (500 μl) was pre-cleared with 25 μl of Protein G Sepharose Fast Flow beads (GE Healthcare Biosciences, Pittsburgh, PA, USA) for 1 h at 4 °C. The beads were then pelleted and each supernatant was incubated with 1 μg rabbit anti-FLAG polyclonal antibody (Sigma–Aldrich Ltd.) for 4 h at 4 °C. Immune complexes were precipitated with 50 μl of Protein G Sepharose beads (50% slurry in lysis buffer) for 1 h at 4 °C, washed four times with 1 ml of lysis buffer, once with 1 ml of 50 mM Tris–HCl, pH 8.0, and then incubated with 30 μl of 1× sample loading buffer (62.5 mM Tris–HCl, pH 6.8; 10% glycerol; 2% SDS; 5% β-mercaptoethanol) at 65 °C for 5 min, to elute bound proteins. The beads were then pelleted and the supernatants were loaded onto 10% Bis–acrylamide SDS–PAGE gels and electrophoresed at 150 V for 1–2 h. Western blotting with anti-HA antibody (Jackson ImmunoResearch, West Grove, PA, USA) at 1:10,000 in TBS–T+1% non-fat milk powder for 2 h at room temperature. The membranes were washed with TBS–T and then developed with ECL Plus (GE Healthcare Biosciences). Chemiluminescent signals were visualized on a Fuji LAS4000 Imager. Three independent experiments were performed for each GPCR.

For western blotting of HA-hMC4R with hMRAP2, HEK293 cells were transfected with HA-hMC4R with hMRAPa, hMRAP2 or pcDNA 3.1, and lysates were prepared as described above. Cell lysates (25 μg/lane) were digested in 2× sample loading buffer, heated to 65 °C for 10 min before loading onto 10% Bis–acylamide SDS–PAGE gels and electrophoresis was performed at 150 V for 1–2 h. Western blotting with anti-HA antibody (as described above) and anti-β-tubulin antibody was performed on SDS–PAGE gels run in parallel. To detect β-tubulin, the PVDF membrane was blocked with 5% BSA/TBS–T for 1 h and then incubated with rabbit anti-β-tubulin antibody (Cell Signalling Technology, Danvers, MA, USA), diluted 1/1000 in 5% BSA/TBS–T overnight at 4 °C. The membrane was then washed with TBS–T, incubated with HRP-conjugated anti-rabbit secondary antibody (Jackson ImmunoResearch) at 1:10,000 in TBS–T+1% non-fat milk powder for 2 h at room temperature and washed again with TBS–T prior to development.

Analysis of N-linked glycosylation and sialylation

HEK293 cells were transfected with HA-hMC2R or HA-hMC4R with hMRAPa-FLAG or pcDNA 3.1. Total cell lysates were digested with either PNGase F (synthesised at the School of Biological Sciences, University of Auckland, Loo et al. (2002)), endoglycosidase H or neuraminidase (New England Biolabs, Ipswich, MA, USA). Lysates (100 μg) were digested with 2 μg of PNGase F in PBS+1% SDS for 4 h at 37 °C or with 500 U of endoglycosidase H or 50 U of neuraminidase according to the manufacturer’s instructions for 16–18 h at 37 °C. Digests were diluted in 2× sample loading buffer (62.5 mM Tris–HCl, pH 6.8; 10% glycerol; 2% SDS; 5% β-mercaptoethanol)+50 mM dithiothreitol and western blotting with anti-HA antibody was performed as described above. Two independent experiments were performed for each receptor.

Cell surface protein fractionation

Biotinylation and fractionation of cell surface HA-hMC4R were performed using a Pierce Cell Surface Protein
Isolation Kit (Pierce Protein Research Products, Rockford, IL, USA). The manufacturer’s protocol was followed but reagent volumes were reduced to biotinylate only one 10 cm² plate of HEK293 cells transfected with HA-hMC4R and either hMRAPa-FLAG or pcDNA 3.1. Cell surface and intracellular fractions (20 µl) were digested with PNGase F or endoglycosidase H as described above, but digests were incubated in 1× sample loading buffer for 2 h at 37 °C. Half of each final reaction volume was analysed on SDS–PAGE and HA-hMC4R was detected by western blotting as described above. To assess sample loading, the western blot for the intracellular HA-hMC4R fraction was stripped with 2% SDS, 125 mM Tris–HCl pH 6.8, 100 mM β-mercaptoethanol for 50 min at 50 °C, washed thoroughly in Milli-Q water, and then blocked in 5% BSA/TBS–T. Detection of β-tubulin was performed as described above.

Results

Observed molecular masses for all five HA-hMCR subtypes differed from their predicted molecular masses

All five HA-hMCR subtypes were detected in cell lysates by western blotting, provided that lysates were not boiled prior to loading on SDS–PAGE (Fig. 1). The HA-hMC1R was detected as two bands of ~30 and ~34 kDa, which were less than its predicted molecular mass of ~38 kDa (Fig. 1A, lane 3). The HA-hMC2R was detected as three bands of ~38, ~45 and ~52 kDa, which were greater than its predicted molecular mass of 37 kDa (Fig. 1B, lane 3). The HA-hMC3R was detected as a single strong band at ~44 kDa and a weak band at ~33 kDa, which were greater and lesser respectively than its predicted molecular mass of ~39 kDa (Fig. 1C, lane 3). The HA-hMC4R was detected as five bands of ~44, ~65, ~70, ~75 and ~80 kDa, which were greater than its predicted molecular mass of ~40 kDa (Fig. 1D, lane 3). The HA-hMC5R predominantly migrated as a single band at ~60 kDa, which was greater than its predicted molecular mass of ~40 kDa (Fig. 1E, lane 3). Weaker HA-hMC5R-specific bands were observed at ~39, ~52, ~65 and ~36 kDa (Fig. 1E, lane 3).

hMRAPa-FLAG interacted with all five HA-hMCR subtypes and this interaction specifically changed HA-hMC4R molecular mass

To investigate whether hMRAPa interacts with hMCR subtypes to alter their molecular mass, hMRAPa-FLAG and HA-hMCR subtypes were co-immunoprecipitated and each HA-hMCR subtype was detected by western blotting.

Figure 1
Interactions of the five different HA-hMCR subtypes with hMRAPa-FLAG. Lysates (L) of HEK293 cells transiently transfected with HA-hMCR±hMRAPa-FLAG were run in parallel with lysates that had been co-immunoprecipitated (IP) with anti-FLAG antibody. Western blotting was performed using anti-HA antibody. Predicted molecular masses are (A) HA-hMC1R, 37.9 kDa; (B) HA-hMC2R, 37 kDa; (C) HA-hMC3R, 39.2 kDa; (D) HA-hMC4R, 40.1 kDa and (E) HA-hMC5R, 39.8 kDa. The 3 × HA tag is 4.4 kDa. Predicted molecular masses were determined using the ExPaSy Compute pI/MW tool: http://expasy.org/tools/pi_tool.html. Molecular masses (kDa) are indicated on the right-hand side of each blot. Bands of interest are indicated on the right-hand side of each lane with (closed left triangle). Asterisks indicate heavy and light chains of IgG. Closed diamonds indicate bands that cannot be distinguished as specific or non-specific. 1–6, Lane numbers.

Following co-immunoprecipitation of the HA-hMC1R and hMRAPa-FLAG, two bands at ~30 and ~33 kDa were observed (Fig. 1A, lane 2). The ~30 kDa band was not
detected in hMC1R cell lysates (Fig. 1A, lanes 1 and 3). Bands of similar molecular mass were observed in cell lysates expressing HA-hMC1R alone or HA-hMC1R together with hMRAPα-FLAG (Fig. 1A, lane 1 vs lane 3).

Nine HA-hMC2R-specific bands of different intensities were observed following co-immunoprecipitation with hMRAPα-FLAG with the most intense bands observed at ~45 and ~52 kDa (Fig. 1B, lane 2). These bands were also observed in HA-hMC2R cell lysates and were more intense when the HA-hMC2R was expressed with hMRAPα-FLAG than when it was expressed alone (Fig. 1B, lane 1 vs lane 3). Not all of the HA-hMC2R-specific bands that were observed when the HA-hMC2R was co-immunoprecipitated with hMRAPα-FLAG were also observed in HA-hMC2R cell lysates. This may in part reflect lower protein concentrations in cell lysates compared with immunoprecipitates.

Following co-immunoprecipitation of the HA-hMC3R and hMRAPα-FLAG, intense HA-hMC3R-specific bands were observed at ~40 and ~80 kDa and a weaker band was observed at ~33 kDa (Fig. 1C, lane 2). The ~40 kDa-specific band was also observed in HA-hMC3R cell lysates both in the presence and the absence of hMRAPα-FLAG, while the ~33 kDa HA-hMC3R band was only faintly detected in the cell lysates for the HA-hMC3R expressed alone (Fig. 1C, lanes 1 and 3). The weaker signals and the absence of the ~80 kDa band in the cell lysates compared with the immunoprecipitates (Fig. 1C, lanes 1, 2 and 3) could reflect the lower protein concentrations in lysates compared with immunoprecipitates.

Following co-immunoprecipitation of the HA-hMC4R with MRAPα-FLAG, a strong smear at ~52 kDa and three bands at ~35, ~40 and ~45 kDa were observed (Fig. 1D, lane 2). The strong ~52 kDa HA-hMC4R-specific smear is probably three closely spaced bands at ~50, ~52 and ~60 kDa as observed in the cognate cell lysate (Fig. 1D, lane 1). The ~35, ~40 and ~45 kDa HA-hMC4R-specific bands observed following co-immunoprecipitation with hMRAPα-FLAG were not detected in HA-hMC4R cell lysates (Fig. 1D, lanes 1 and 3). Different HA-hMC4R-specific bands were also observed in cell lysates for the HA-hMC4R expressed with hMRAPα-FLAG compared with when it was expressed alone. In the presence of hMRAPα-FLAG, the ~80, ~70 and ~75 kDa HA-hMC4R bands observed when the HA-hMC4R was expressed alone were absent, the ~44 kDa band was present, the ~65 kDa band was shifted slightly downwards to ~60 kDa, and additional bands were observed at ~50 and ~52 kDa (Fig. 1D, lane 1 vs lane 3).

Following co-immunoprecipitation of HA-hMC5R with hMRAPα-FLAG, HA-hMC5R-specific bands were observed at ~36, ~39, ~44 and ~55 kDa (Fig. 1E, lane 2). Only the ~39 and ~36 kDa bands were also faintly observed in cell lysates when HA-hMC5R was expressed alone (Fig. 1E, lane 3). Specific bands in cell lysate for HA-hMC5R expressed with hMRAPα-FLAG were difficult to see, although a faint band was observed at ~55 kDa (Fig. 1E, lane 1). HA-hMC5R-specific bands may have been difficult to see because less protein was loaded in this lane compared with the immunoprecipitate lane. In further experiments with HA-hMC5R cell lysates, both when the HA-hMC5R was expressed alone and when it was expressed with hMRAPα-FLAG, it was observed as eight bands between ~40 and ~150 kDa (Supplementary Figure 1, see section on supplementary data given at the end of this article, lanes 1 and 3).

hMRAPα-FLAG interacted with the HA-hCL and the HA-hD2R

To determine whether hMRAPα interacts with GPCRs other than the hMCR family, we performed co-immunoprecipitation of hMRAPα-FLAG with HA-hCL or the HA-hD2R. When the HA-hCL was expressed alone or co-expressed together with hMRAPα-FLAG, a single band at ~52 kDa was observed in cell lysates (Fig. 2, lanes 1 and 3). When the HA-hCL was co-expressed with FLAG-hRAMP1, the accessory protein that promotes hCL to function as a calcitonin gene-related peptide receptor, a single band was observed at ~60 kDa in cell lysate (Fig. 2, lane 5). Following co-immunoprecipitation with either hMRAPα-FLAG or FLAG-hRAMP1, the HA-hCL was observed as a single band at ~52 or ~60 kDa respectively (Fig. 2, lanes 2 and 6). Therefore the HA-hCL interacted with hMRAPα-FLAG indicating that hMRAPα may not be a specific accessory protein for the hMCR family. The HA-hD2R migrated as a single band at ~70 kDa in cell lysates (Supplementary Figure 2, see section on supplementary data given at the end of this article, lanes 1 and 3). Following co-immunoprecipitation of HA-hD2R with hMRAPα-FLAG, the HA-hD2R was observed as a smear at ~60–80 kDa and two weak bands at ~50 and ~45 kDa (Supplementary Figure 2, lane 2). The ~60–80 kDa smear was weakly observed when the HA-hD2R was co-immunoprecipitated from cells transfected with the HA-hD2R alone (Supplementary Figure 2, lane 4) and we would not expect to see any specific bands in this lane. We cannot verify that the ~60–80 kDa smear represents a specific interaction of the HA-hD2R with hMRAPα-FLAG.
It was shown previously that hMRAPa promotes hMC2R N-linked glycosylation and therefore we hypothesised that the HA-hMC4R molecular mass changes induced by co-expression with hMRAPa-FLAG result from altered HA-hMC4R N-linked glycosylation. First, we verified that hMRAPa enhances hMC2R glycosylation in HEK293 cells. HEK293 cell lysates for the HA-hMC2R expressed alone or expressed with hMRAPa-FLAG were deglycosylated with PNGase F, endoglycosidase H or neuraminidase. HA-hMC2R-specific bands were observed at 32, 35, 45 and 52 kDa in the absence of treatment with endoglycosidases (Fig. 3A and C, lanes 1 and 3; B, lanes 3 and 5). The 45 and 52 kDa HA-hMC2R-specific bands, which were more intense when the HA-hMC2R was expressed with hMRAPa-FLAG were deglycosylated with PNGase F, endoglycosidase H or neuraminidase. HA-hMC2R-specific bands were observed at ~32, ~35, ~45 and ~52 kDa in the absence of treatment with endoglycosidases (Fig. 3A and C, lanes 1 and 3; B, lanes 3 and 5). The ~45 and ~52 kDa HA-hMC2R-specific bands, which were more intense when the HA-hMC2R was expressed with hMRAPa-FLAG compared with when the HA-hMC2R was expressed alone, were sensitive to PNGase F digestion (Fig. 3A, lanes 2 and 4) but not to endoglycosidase H digestion (Fig. 3B, lanes 4 and 6). The ~45 kDa HA-hMC2R-specific band was partly sensitive to neuraminidase digestion as it smeared downwards following neuraminidase treatment (Fig. 3C, lanes 2 and 4). The ~35 kDa HA-hMC2R-specific band was sensitive to both PNGase F (Fig. 3A, lanes 2 and 4) and endoglycosidase H (Fig. 3B, lanes 4 and 6), indicating that this band represents an intermediate in the HA-hMC2R glycosylation pathway. These results confirm that HA-hMC2R has endoglycosidase H-resistant complex N-linked glycosylation when expressed in HEK293 cells and that hMRAPa-FLAG co-expression enhances HA-hMC2R complex N-linked glycosylation.

We went on to examine complex N-linked glycosylation of the HA-hMC4R expressed alone and together with hMRAPa-FLAG. In the absence of treatment with endoglycosidases, the HA-hMC4R expressed alone migrated as at least four bands between ~65 and ~80 kDa with a weaker band at ~44 kDa (Fig. 3D and F, lane 1; E, lane 3). When the HA-hMC4R was co-expressed with hMRAPa-FLAG, all HA-hMC4R-specific bands above ~65 kDa were absent and an additional band was observed at ~50 kDa (Fig. 3D and F, lane 3; E, lane 5). Following PNGase F digestion, the HA-hMC4R was observed as two bands at ~31 and ~33 kDa both when it was expressed alone and when it was co-expressed with hMRAPa-FLAG, which presumably represents native HA-hMC4R (Fig. 3D, lanes 2 and 4). Following endoglycosidase H digestion of HA-hMC4R co-expressed with hMRAPa-FLAG, the HA-hMC4R was observed as four bands between ~65 and ~80 kDa and a band at ~31 kDa (Fig. 3E, lane 4). Following endoglycosidase H digestion of HA-hMC4R expressed alone, the HA-hMC4R was observed as four bands between ~65 and ~65 kDa and a single band at ~31 kDa (Fig. 3E, lane 6). All of the HA-hMC4R-specific bands above ~44 kDa were sensitive to PNGase F and resistant to endoglycosidase H, both when HA-hMC4R was expressed alone and expressed with
hMRAPa-FLAG. Therefore, these bands represent HA-hMC4R with complex N-linked glycosylation. The ~44 kDa HA-hMC4R-specific band was sensitive to both PNGase F and endoglycosidase H digestion and therefore represents an intermediate glycosylated HA-hMC4R. Following neuraminidase digestion of HA-hMC4R expressed alone, the HA-hMC4R migrated as multiple bands from ~50 to 65 kDa and two weak bands at ~44 and ~70 kDa (Fig. 3F, lane 2). When HA-hMC4R was co-expressed together with hMRAPa-FLAG and the cell lysate was digested with neuraminidase, HA-hMC4R was observed as two strong bands at ~47 and ~50 kDa (Fig. 3F, lane 4). All of the HA-hMC4R-specific bands above ~44 kDa were partly sensitive to neuraminidase, except for the ~50 kDa band observed when the HA-hMC4R was co-expressed with hMRAPa-FLAG. Therefore, the HA-hMC4R contained Neu5Acz2–3R and Neu5Acz2–6R sialic acid residues, both when it was expressed alone and when it was expressed with hMRAPa-FLAG. The neuraminidase-resistant ~50 kDa HA-hMC4R band observed in the presence of hMRAPa-FLAG may represent an alternative intermediate in the HA-hMC4R glycosylation pathway. Overall our data show that the HA-hMC4R has complex N-linked glycosylation, which varies following co-expression with hMRAPa-FLAG.

hMRAPa-FLAG altered hMC4R molecular mass

To determine whether the HA-hMC4R with altered complex N-linked glycosylation could reach the cell surface, we performed a cell surface biotinylation assay to separate cell surface and intracellular HA-hMC4R fractions and then digested these fractions with endoglycosidases. HA-hMC4R was expressed on the cell surface and intracellularly both when the receptor was expressed alone and when it was expressed with hMRAPa-FLAG (Fig. 4). When the undigested HA-hMC4R was expressed alone, strong bands in the intracellular fraction were

Figure 3

hMRAPa-FLAG influences both HA-hMC2R and HA-hMC4R N-linked glycosylation in HEK293 cells. Lysates of HEK293 cells transiently transfected with HA-hMC2R ± hMRAPa-FLAG were treated with either PNGase F (A), endoglycosidase H (B), or neuraminidase (C). Lysates of HEK293 cells transiently transfected with HA-hMC4R ± hMRAPa-FLAG were treated with PNGase F (D), endoglycosidase H (E) or neuraminidase (F). Western blotting was performed using an anti-HA antibody. Molecular masses (kDa) are indicated on the left side of the western blots. Bands of interest are indicated with (closed left triangle). 1-6, lane.
observed at ~40 and ~60 kDa, with weaker bands observed at ~38, ~44, ~55, ~70, ~75 and ~80 kDa (Fig. 4A, lane 1). By contrast, in the presence of hMRAPa-FLAG the HA-hMC4R-specific bands above ~60 kDa were absent and an additional band at ~50 kDa was observed in the undigested intracellular fraction (Fig. 4A, lane 4). Densitometric analysis of a β-tubulin loading control on the same membrane indicated that ~33% less sample was loaded in lane 4 compared with lane 1, which could account for the different HA-hMC4R signal intensities. Two different exposures of the membrane probed for the cell surface HA-hMC4R fractions are shown to permit more accurate estimation of HA-hMC4R band sizes (Fig. 4B and C). When the undigested HA-hMC4R was expressed alone, two bands were observed at ~40 and ~60 kDa, with a smear at ~70–80 kDa in the cell surface fraction (Fig. 4B, lane 1). Observation of this membrane at a shorter exposure time indicated that the ~70–80 kDa smear was comprised of three closely spaced bands and an additional band was present below at ~38 kDa (Fig. 4C, lane 1). When HA-hMC4R was co-expressed with hMRAPa-FLAG, the bands above ~60 kDa were absent, and additional bands at ~55 and ~50 kDa were observed in the undigested intracellular fraction (Fig. 4B and C, lane 4). hMRAPa therefore induces changes in HA-hMC4R molecular mass both intracellularly and at the cell surface.

All of the HA-hMC4R-specific bands above ~38 kDa were sensitive to PNGase F digestion both in the intracellular and cell surface fractions and both when HA-hMC4R was expressed alone or co-expressed with hMRAPa-FLAG. Additional HA-hMC4R-specific bands were also observed at ~31 and ~33 kDa, which presumably represent monomeric native HA-hMC4R (Fig. 4A, lanes 2 and 5; B, lanes 2 and 5). Additional weak bands were also observed at ~36 and ~38 kDa in the intracellular fraction for the HA-hMC4R expressed alone and digested with PNGase F (Fig. 4A, lane 2).

For the HA-hMC4R expressed alone, all of the HA-hMC4R-specific bands above ~50 kDa in both intracellular and cell surface fractions were resistant to endoglycosidase H digestion and represent HA-hMC4R with complex N-linked glycosylation (Fig. 4A and B, lane 3). However, the ~38, ~40 and ~44 kDa bands were sensitive to endoglycosidase H and represent intermediates in the HA-hMC4R N-linked glycosylation pathway (Fig. 4A and B, lane 3). For the HA-hMC4R expressed with hMRAPa-FLAG in both the intracellular and cell surface fractions, all of the HA-hMC4R-specific bands above ~40 kDa were resistant to endoglycosidase H and represent HA-hMC4R with complex N-linked glycosylation (Fig. 4A and B, lane 6). Therefore, hMRAPa-FLAG co-expression altered HA-hMC4R complex N-linked glycosylation both intracellularly and at the cell surface.
Discussion

We show here that HA-hMC4R molecular mass is specifically altered following co-expression with hMRAPa-FLAG in HEK293 cells. hMRAPa-FLAG co-expression did not change the molecular mass of the other four MCR subtypes or the hCL or hD2R. Furthermore, we show that the hMRAPa-induced changes in hMC4R complex N-linked glycosylation in a manner that differs from its previously reported effects on hMC2R glycosylation. We observed the expression of hMC4R with hMRAPa-induced changes in complex N-linked glycosylation at the cell surface as well as intracellularly, indicating that differential complex N-linked glycosylation could potentially alter hMC4R functional expression. Our data indicate that hMRAPa could be an accessory protein influencing functional expression of the hMC4R, provided these proteins are co-expressed in vivo.

The hMC2R is the only hMCR subtype for which immunoblotting following co-expression with hMRAPa has been performed and this revealed increased expression of higher molecular mass glycosylated hMC2R (Roy et al. 2007, 2010, Sebag & Hinkle 2007, 2009a). We confirmed that hMRAPa specifically increases the relative abundance of complex glycosylated (~45 and ~52 kDa) compared with lower molecular mass intermediate and monomeric (~32 and ~35 kDa) hMC2R forms. Additionally, we have shown for the first time that the HA-hMC2R is partly sensitive to neuraminidase digestion; therefore it contains some Neu5Ac2-3R and Neu5Ac2-6R sialic acid residues. We observed hMRAPa-FLAG-induced changes in HA-hMC4R molecular mass in cell lysates that were electrophoresed in parallel with co-immunoprecipitated samples. Others did not observe hMRAPa-induced changes in hMC4R molecular mass, because they immunoblotted for hMRAPa while we immunoblotted for each HA-hMCR subtype (Chan et al. 2009). The hMC4R has previously been shown to migrate at a molecular mass higher than its predicted molecular mass on SDS–PAGE (Ju et al. 2001, Peter et al. 2010). The hMC4R is predicted to be N-glycosylated at three N-terminal sites, Asn3, Asn17 and Asn26, but it has never been determined if this modification occurs in vitro or in vivo (Schioth et al. 1997, Mountjoy 2000, Tao 2010). We have performed the first analysis of hMC4R N-linked glycosylation by western blotting and shown that the HA-hMC4R has extensive endoglycosidase H-resistant complex N-linked glycosylation when it is expressed in HEK293 cells. hMRAPa co-expression induces changes in the mass of the N-linked glycans attached to the HA-hMC4R. The HA-hMC4R was sensitive to neuraminidase digestion both when it was expressed alone and when it was expressed with hMRAPa-FLAG. Therefore hMRAPa-FLAG does not block the addition of sialic acid to the HA-hMC4R. hMRAPa-FLAG could influence oligosaccharide processing prior to the addition of terminal sialic acid as we observed a
neuraminidase-resistant HA-hMC4R-specific band when the HA-hMC4R was expressed with hMRAPa-FLAG. Alternatively, hMRAPa-FLAG may alter branching of complex oligosaccharide chains and/or hMRAPa may differentially influence hMC4R complex glycosylation at each of the three predicted N-linked glycosylation sites. Future studies are required to mutate each of the predicted hMC4R N-linked glycosylation sites individually and to express these mutant receptors with and without hMRAPa to determine whether hMRAPa influences hMC4R N-linked glycosylation at more than one site. Differential complex N-linked glycosylation at separate sites has been reported for the hMC1R (Herraiz et al. 2011). We attempted to purify the HA-hMC4R for proteomic analysis but were unsuccessful.

The effect on hMC4R molecular mass was specific to hMRAP1, since we observed this change following co-expression with either hMRAPa or hMRAPb but not following co-expression with hMRAP2 or FLAG-hRAMP1 (data not shown). hMRAP2 increased the intensity of all hMC4R molecular mass specific bands. This contrasts with the increased abundance of hMC2R high molecular mass bands that we and others have observed with hMRAPa co-expression. Other GPCR accessory proteins enhance the folding and stability of specific GPCRs (Ritter & Hall 2009). hMRAP2 could act to enhance the folding and/or the stability of the hMC4R, leading to increased hMC4R protein expression.

We observed no effect of hMRAPa-FLAG co-expression on the molecular masses of the hMC1R, hMC3R or hMC5R. However, the hMC3R and hMC5R both migrated at higher molecular masses than predicted, indicating that these receptors also undergo post-translational modification. The MC5R was previously reported to have two predicted N-linked glycosylation sites (Schioth et al. 1997). The HA-hMC1R migrated at a lower molecular mass than predicted. Previously, FLAG-tagged hMC1R was observed to migrate at a lower molecular mass than untagged hMC1R (Sanchez Mas et al. 2002, Roberts et al. 2006, Sanchez-Laorden et al. 2006). Epitope tagging the hMC1R may alter hMC1R conformation resulting in greater mobility on SDS–PAGE. The hMC1R has also been reported to migrate as oligomers and/or N-linked glycoforms, but we did not observe any high-molecular mass hMC1R-specific bands (Sanchez Mas et al. 2002, Sanchez-Laorden et al. 2006).

In conclusion, we have shown that hMRAPa specifically alters hMC4R molecular mass and complex glycosylation. The functional significance of hMC4R complex N-linked glycosylation remains to be determined. N-linked glycosylation has been shown to modulate the cell surface expression, membrane dynamics, ligand binding and signalling of different GPCRs (Wheatley & Hawtin 1999, Murray et al. 2009). hMRAPa could influence any of these aspects of the hMC4R life cycle by altering hMC4R N-linked glycosylation. Regardless, our observation that hMC4R has differential complex N-linked glycosylation as a result of an interaction with hMRAPa indicates that hMRAPa may be an accessory protein modulating hMC4R functional expression.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/JME-12-0220.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
Funding for this work was provided by the International Investment Opportunities Fund and the Health Research Council of New Zealand grant IIOF-UOA-016 (K G M). E I K was supported by PhD scholarships from the Neurological Foundation of New Zealand and the University of Auckland.

Acknowledgements
The authors thank Dr Michelle Glass (University of Auckland) for the gift of the HA-tagged dopamine receptor construct, Dr Deborah Hay (University of Auckland) for gifts of HA-hCL, FLAG-hRAMP1 and Dr Shaun Lott (University of Auckland) for PNGase F enzyme, Rebecca Marnane and Duneeshya Gunasekara for technical assistance. FLAG-hRAMP1 was a gift to Deborah Hay (University of Auckland) from Denise L Wootten (Monash University, Melbourne, Australia).

References
Gardiner K, Slavov D, Bechtel I & Davison M 2002 Annotation of human chromosome 21 for relevance to Down syndrome: gene structure

Received in final form 7 January 2013
Accepted 10 January 2013
Accepted Preprint published online 10 January 2013