New insight into the mechanisms associated with the rapid effect of T\textsubscript{3} on AT1R expression

Gabriela Placoná Diniz1, Ana Paula Cremasco Takano1, Erika Bruneto2, Francemilson Goulart da Silva2, Maria Tereza Nunes2 and Maria Luiza Morais Barreto-Chaves1

1Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy and 2Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes 2415, Cidade Universitária, São Paulo, SP 05508-900, Brazil

(Correspondence should be addressed to M L M Barreto-Chaves; Email: mchaves@usp.br)

Abstract

The angiotensin II type 1 receptor (AT1R) is involved in the development of cardiac hypertrophy promoted by thyroid hormone. Recently, we demonstrated that triiodothyronine (T\textsubscript{3}) rapidly increases AT1R mRNA and protein levels in cardiomyocyte cultures. However, the molecular mechanisms responsible for these rapid events are not yet known. In this study, we investigated the T\textsubscript{3} effect on AT1R mRNA polyadenylation in cultured cardiomyocytes as well as on the expression of microRNA-350 (miR-350), which targets AT1R mRNA. The transcriptional and translational actions mediated by T\textsubscript{3} on AT1R levels were also assessed. The total content of ubiquitinated proteins in cardiomyocytes treated with T\textsubscript{3} was investigated. Our data confirmed that T\textsubscript{3} rapidly raised AT1R mRNA and protein levels, as assessed by real-time PCR and western blotting respectively. The use of inhibitors of mRNA and protein synthesis prevented the rapid increase in AT1R protein levels mediated by T\textsubscript{3}. In addition, T\textsubscript{3} rapidly increased the poly-A tail length of the AT1R mRNA, as determined by rapid amplification of cDNA ends poly-A test, and decreased the content of ubiquitinated proteins in cardiomyocytes. On the other hand, T\textsubscript{3} treatment increased miR-350 expression. In parallel with its transcriptional and translational effects on the AT1R, T\textsubscript{3} exerted a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as on translational efficiency, resulting to the rapid increase in AT1R mRNA expression and protein levels. Finally, these results show, for the first time, that T\textsubscript{3} rapidly triggers distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocytes.

Journal of Molecular Endocrinology (2012) 49, 11–20

Introduction

Thyroid hormones (THs), in addition to elevating the basal metabolism, stimulate the synthesis of cardiac proteins, which results in a significant increase in cardiac muscle mass (Kahaly & Dillmann 2005, Pantos et al. 2008, Dillmann 2009). A growing body of evidence indicates that the renin–angiotensin system (RAS) has a critical role in the development of cardiac hypertrophy found in hyperthyroidism and the local RAS, present in the cardiomyocytes, is directly implicated in this process (Diniz et al. 2009, Carneiro-Ramos et al. 2010). In this sense, the contribution of the RAS in this pathological condition has been demonstrated by several studies reported in the literature, which showed that AT1R receptor blockade and angiotensin-converting enzyme inhibition attenuate or prevent the development of cardiac hypertrophy induced by THs (Kobori et al. 1997, Asahi et al. 2001, Basset et al. 2001, Hu et al. 2003, Pantos et al. 2005).

For a long time, TH effects were considered to be mediated by its interaction with TH receptors present on specific regions of target genes, by means of which it can modulate gene expression (Ribeiro et al. 1995, Pantos et al. 2008). Although the effects of THs that are mediated by the modulation of gene expression are known to occur with a time lag of hours or even days, research that has been carried out mainly in the past decade has identified other responses to TH that are more rapid and take place in seconds or minutes (Davis & Davis 2002, Hiroi et al. 2006, Davis et al. 2008). Usually, the posttranscriptional actions do not depend on THs binding to the nuclear receptors (TRs), are achieved in a short period of time, and occur even in the presence of drugs that block gene transcription, which point to a nongenomic action of THs (Siegrist-Kaiser et al. 1990).

In fact, some binding sites for THs have been identified in the cytosol, plasma membrane, and some organelles, like endoplasmic reticulum and mitochondria (Cheng et al. 1987, Davis et al. 2005, Psarra et al. 2006, Cao et al. 2009, Verga Falzacappa et al. 2009), and have been shown to be involved in the rapid actions of THs, including those on mRNA processing.

We have recently demonstrated that the angiotensin II type 1 receptor (AT1R) is a critical mediator of the ability of triiodothyronine (T\textsubscript{3}) to induce...
cardiomyocyte hypertrophy as well as the rapid effect that T₃ has on the activation of the Akt/GSK-3β/mTOR signaling pathway (Diniz et al. 2009). However, the molecular mechanisms underlying these rapid T₃-promoted events are not yet known. Considering that this effect was achieved in a short period of time (5 or 10 min) and that there is no consensus sequence for TH receptor binding in the AT1R gene promoter, we hypothesize that this action could occur as a consequence of posttranscriptional effects. In this sense, besides regulating the transcription of several genes, it has been found that THs may also have posttranscriptional effects on the stability of several mRNAs (Poddar et al. 1996, Staton & Leedman 1998, Kamegai et al. 2001, Liu & Waxman 2002, Danzi & Klein 2005, Minamisawa et al. 2006, Silva et al. 2010). One of the posttranscriptional mechanisms that influence the stability of mRNA is the increase in mRNA poly-A tail length, which protects the mRNA from degradation by RNases (Salles et al. 1999). Then, the increase in mRNA poly-A tail length followed by an improvement of the transcript stability and translation might contribute to the high AT1R synthesis observed in hyperthyroidism.

An additional mechanism that tightly controls the level of many key proteins involved in transcriptional regulation is the ubiquitin–proteasome system (UPS), the major pathway for intracellular protein degradation in eukaryotic cells. Activation of the UPS has been described in different models of cardiac hypertrophy, and its inhibition may prevent and reverse cardiac hypertrophy and remodeling in vivo (Schlossarek & Carrier 2011). Then, with a few known exceptions, polyubiquitination is required for a protein to be degraded by the proteasome (Su & Wang 2010), which consequently influences the regulation of protein content in cells. Considering the effects of UPS on different models of cardiac hypertrophy, the effect of T₃ on the content of ubiquitinated proteins in cardiomyocytes was also evaluated in this study.

Indeed, recent studies have uncovered a potentially important role for a family of small RNAs, known as microRNAs (miRs), in the regulation of gene expression at the posttranscriptional level by mRNA degradation, translation repression, or miR-mediated mRNA decay (Cordes & Srivastava 2009). The miRs have been implicated in the control of diverse biological and pathological processes, including cell differentiation, apoptosis, cell proliferation, and organ development (Plasterk 2006). Bioinformatic approaches have been used to predict that each miR may regulate hundreds of targets, indicating their important role in most biological processes (Elia et al. 2009). In this regard, a recent study demonstrated that miR-155 interacts with the 3'-UTR of the human AT1R mRNA and inhibits the expression of the AT1R in fibroblasts (Martin et al. 2006). Moreover, a search for predicted miR targets indicated that the rat AT1R is a target of miR-350. Considering this finding, we hypothesized that T₃ might modulate this miR in cardiomyocytes, which could be indirectly contributing to the increase in AT1R levels after rapid T₃ treatment.

Taking this into account, in this report, we attempted to investigate whether TH could rapidly trigger distinct mechanisms to regulate the AT1R levels in cardiomyocytes. We observed for the first time that, in parallel with its transcriptional and translational effects on the AT1R, T₃ also exerts a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increased transcript stability, as well as translational efficiency, resulting in the rapid increase in AT1R mRNA expression as well as in its protein levels. Additionally, our study demonstrates that T₃ rapidly reduces the ubiquitin protein content and, on the other hand, increases miR-350 expression in cardiomyocyte cultures. Finally, this study shows, for the first time, some mechanistic insights into the rapid effect induced by T₃ on AT1R levels.

Materials and methods

Primary cultures of cardiomyocytes

All protocols were performed in accordance with the Ethical Principles in Animal Research set forth by the Brazilian College of Animal Experimentation and were approved by the Biomedical Sciences Institute/USP Ethics Committee for Animal Research. Primary cultures of neonatal rat ventricular cardiac myocytes were prepared by enzymatic disaggregation, as described previously (Barreto-Chaves et al. 2000). Briefly, hearts from neonatal (1- to 3-day old) Wistar rats were excised and ventricles were minced and subjected to multiple enzymatic digestions at 37 °C using a mixture of collagenase type 2 (Worthington, Lakewood, NJ, USA) and pancreatin (Gibco). Dissociated cells were layered on a discontinuous Percoll (Amersham Biosciences) density gradient, consisting of two phases. Myocytes migrated to the interface of the discontinuous layers, while other cells migrated to the surface of the layer of Percoll. The myocytes were collected and washed to remove all traces of Percoll. Cell viability was estimated by the Trypan blue method, after which the cells were counted and plated. Myocytes were cultured in DMEM (Gibco) containing 5% newborn calf serum (NCS; Gibco) and 10% horse serum (Gibco), supplemented with antibiotics (penicillin and streptomycin; Gibco). The cells were maintained at 37 °C under humidified conditions of 95% air and 5% CO₂.
Treatment of the cells

Seventy-two hours after plating, the cells were transferred to DMEM containing NCS 0.5% and maintained overnight. Then, the medium was discarded and the cells were incubated with serum-free medium (control cells) or serum-free medium containing T3 (10 nmol/l; Sigma) for 5, 10, 15, and 30 min. Moreover, the cardiomyocytes were incubated for 15 min with the translational inhibitor cycloheximide (Cyclo 5 μg/ml; Sigma) or with the transcription inhibitor actinomycin D (Actino 5 μg/ml; Sigma) (Frias et al. 2007) before stimulation with T3 (10 nmol/l) for 5 min.

Rapid amplification of cDNA ends poly-A test

The AT1R mRNA poly-A tail length was determined by a rapid amplification of cDNA ends poly-A test (RACE-PAT), according to a standard protocol (Salles et al. 1999) used previously (Serrano-Nascimento et al. 2010). Initially, 200 ng oligo(dT) anchor (Salles et al. 2009) were added to 2 μg total RNA in a sterile RNase-free microfuge tube. The samples were denatured at 70 °C for 5 min, transferred to 42 °C, and reverse transcribed for 60 min, using a solution containing 10 mmol/l dNTPs mix, 5× first-strand buffer, 0.01 mol/l dithiothreitol (DTT), and 1 μl of 200 U/μl reverse transcriptase MMLV (Invitrogen Life Technologies). Three microliters of the reverse-transcribed reaction product were mixed with a reaction buffer containing 25 mmol/l MgCl2, 10 mmol/l dNTPs mix, 25 pmol/1 of each primer (AT1R: 5′-CCC AGA AAG CCG TAG AAC AG-3′, while those for β-actin were 5′-AGT TCG CCATGG ATG ACG AT-3′ and 5′-AAG CCG GCC TTG CAC AT-3′). The nucleotide location of the AT1R primers within the AT1R mRNA reference sequence is from 1041 to 1181 and the nucleotide location of the β-actin primers within the β-actin mRNA reference sequence is from 74 to 143.

Samples were run in duplicate, and the real-time RT-PCR data were normalized to β-actin, as we have previously certified that variations in TH levels do not alter β-actin mRNA levels (Diniz et al. 2009, Carneiro-Ramos et al. 2010).

Real-time RT-PCR

Total RNA was obtained using the Trizol reagent (Invitrogen) following the manufacturer’s instructions. For reverse transcription, we employed 1 μg total RNA using SuperScript II Reverse Transcriptase (Invitrogen). Real-time RT-PCR was performed in a thermocycler (Corbett Research, Sydney, NSW, Australia) using the SYBR Green PCR master mix (Invitrogen) according to the manufacturer’s recommendations. The primer sequences used for AT1R were 5′-CAC TTT CTT GTA TGT GCT GA-3′ and 5′-CCC AGA AAG CCG TAG AAC AG-3′, while those for β-actin were 5′-AGT TCG CCATGG ATG ACG AT-3′ and 5′-AAG CCG GCC TTG CAC AT-3′. The nucleotide location of the AT1R primers within the AT1R mRNA reference sequence is from 1041 to 1181 and the nucleotide location of the β-actin primers within the β-actin mRNA reference sequence is from 74 to 143.

miR stem loop RT-PCR

miR-350 target prediction was performed with the use of the following algorithm: TargetScan (http://www.targetscan.org). The expression of miRs was analyzed by quantitative miR stem loop RT-PCR (TaqMan MicroRNA Assays, Applied Biosystems) as described previously (Thum et al. 2007). The RNA enriched for small species was obtained from cells (mirVana miRNA isolation kit; Ambion, São Paulo, SP, Brazil) following the manufacturer’s instructions. We used a highly target-specific stem loop structure and reverse transcription primer, and after reverse transcription, specific TaqMan hybridization probes for miR amplification were used. The cDNA was reverse transcribed from RNA samples using specific miR primers from the TaqMan MicroRNA Assays (4381117 for miR-350 and 4395470 for RN6-1; Applied Biosystems) and reagents from the TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer’s recommendations. PCR products were amplified from cDNA samples using the TaqMan MicroRNA Assay together with the TaqMan Universal PCR Master Mix (Applied Biosystems) following the manufacturer’s instructions. Considering that U6 snRNA has been generally used as an internal control for normalizing the levels of target miRs obtained by RT-PCR (Nie et al. 2011, Wang et al. 2011), we evaluated the effect exerted by TH on the U6 snRNA and we have certified that variations in TH levels were not able to modulate U6 snRNA. Samples were run in triplicate, and the real-time RT-PCR data were normalized to U6 snRNA.
Western blot analysis

Cell lysates were obtained using digestion buffer (90 mmol/l KCl, 10 mmol/l HEPES, 3 mmol/l MgCl\(^2+\), 5 mmol/l ethylenediaminetetraacetic acid, 1% glycerol, 1 mmol/l DTT, 0.04% SDS, 20 mmol/l aprotinin, 20 mmol/l pepstatin, 20 mmol/l leupeptin, 40 μmol/l phenylmethylsulfonyl fluoride, and 100 mmol/l ortho-vanadate), and immunoblotting was performed as described previously (Diniz et al. 2009). Protein concentrations were analyzed by the Bradford method. Total protein (150 μg) was resolved by electrophoresis on 5% stacking/15% polyacrylamide–SDS gels, and the resolved proteins were transferred to nitrocellulose membrane (Bio-Rad). The membrane was stained with Ponceau solution to demonstrate that the protein concentration was similar in the different lanes. The membrane was then washed with TBST (50 mM Tris, 150 mM NaCl, pH 7.5, and 2% Tween 20) for 10 min at room temperature. After this, the membrane was incubated at 4°C overnight with polyclonal antibody against the following primary antibodies: AT1R (AT1Ra and AT1Rb, which were used for quantification of AT1R expression) and α-actinin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted in TBST. A polyclonal antibody against ubiquitin (Boston Biochem, Cambridge, MA, USA) was used to determine the content of ubiquitinated proteins. After washing, the membranes were added to peroxidase-conjugated anti-rabbit IgG secondary antibody (Amersham Biosciences) for 1 h at room temperature at a 1:10 000 dilution in TBST. The membrane was again washed with TBST and was incubated with ECL detection reagents (Amersham Biosciences), which produced a chemiluminescence signal that was detected by exposure to X-ray film. The protein bands were quantified using densitometry, and the band density was then calculated and expressed as a percentage of control. The samples were normalized to α-actinin. The multiple bands for the ubiquitinated proteins were quantified using densitometry and then were normalized by the actinin levels and the results were expressed as percentage in relation to control.

Statistical analysis

The data obtained are presented as mean±s.d. of at least three independent experiments and are expressed as percentages in relation to control. The number of experiments (n) refers to the number of different cell extractions and each experiment was performed in triplicate. Data were analyzed using one-way ANOVA, followed by Tukey’s post-hoc test, and values of P<0.05 were considered statistically significant.

Figure 1 Modulation of AT1R by T\(_3\) in cultured cardiomyocytes. Initially, a dose–response curve of T\(_3\) was performed to evaluate mRNA (A) and protein levels (B) of AT1R in cells treated with serum-free medium in control group or serum-free medium containing different concentrations of T\(_3\) (10\(^{-9}\) to 10\(^{-6}\) M/l) for 5 min. Then, the cells were treated with serum-free medium containing 10 nM/l T\(_3\) for 5, 10, 15, or 30 min or serum-free medium alone in control cells. β-Actin mRNA expression was used for normalization of AT1R mRNA levels and α-actinin protein expression was used for normalization of AT1R protein levels. Values represent the AT1R mRNA/β-actin mRNA level ratio (C), AT1R/α-actinin protein ratio (D).

*P<0.05; **P<0.01 vs control. Number (n) represents the different cardiomyocyte preparations (n=4).
Results

T₃ rapidly raises the AT1R levels in cardiomyocytes

We have recently demonstrated that T₃ induces a rapid increase in AT1R mRNA and protein levels in isolated cardiomyocytes (Diniz et al. 2009). In order to investigate the possible mechanisms implicated in these rapid events, the cardiomyocytes were treated with T₃ (10 nmol/l) for 5, 10, 15, and 30 min. Then, the AT1R mRNA expression was quantified by real-time RT-PCR and the protein levels were determined by western blotting (Fig. 1). The dose (10 nmol/l) was chosen based on a dose–response curve of T₃ treatment on AT1R mRNA and protein levels in cardiomyocytes in culture as shown in Fig. 1A and B respectively. As expected, the AT1R mRNA levels were significantly increased in T₃-treated cells (P<0.01 vs control) in comparison with the control values (Fig. 1C). Similarly, the protein levels of AT1R were higher after T₃ treatment for 5 min (P<0.01 vs control) and were maintained through 30 min (P<0.01 vs control) of T₃ treatment (Fig. 1D) when compared with control cells. In order to get further mechanistic insight, we analyzed whether the effect of T₃ upon AT1R levels requires translational and transcriptional actions. To access this information, specific translational and transcriptional inhibitors were used (cycloheximide and actinomycin D respectively). Treatment with 10 nmol/l T₃ along with cycloheximide was able to block the increase in AT1R levels observed in cells treated with T₃. The same result was observed when the cells were treated with T₃ and the specific transcription inhibitor actinomycin D (Fig. 2). These results demonstrate that the rapid increase in AT1R levels in cardiomyocyte cultures induced by T₃ involves transcriptional and translational mechanisms.

T₃ rapidly increases the poly-A tail length of the AT1R mRNA

Considering that T₃ promoted a rapid increase in AT1R mRNA and protein levels and that the length of the poly-A tail of mRNAs is directly related to its stability and translation rate, we have investigated whether this hormone influenced the poly-A tail length of the AT1R mRNA in cardiomyocyte cultures. To address this question, the cells were previously treated with T₃ (10 nmol/l) for 5, 10, 15, and 30 min and subsequently RACE-PAT experiments were performed. The poly-A tail length was significantly increased after T₃ treatment for 5 min (~60%, P<0.01 vs control), and this was sustained through 30 min of T₃ treatment (P<0.01 vs control), as revealed by the analysis of the smearing pattern of PCR products obtained by RACE-PAT (Fig. 3). This analysis showed a higher number of base pairs, which is evidenced by the smear, in the AT1R transcript poly-A tail in T₃-treated cardiomyocytes than in their respective controls. These results demonstrate for the first time that T₃ rapidly increases the poly-A tail length of the AT1R mRNA in cultured cardiomyocytes.

T₃ rapidly decreases the content of ubiquitinated proteins

It is well known that one of the mechanisms involved in the regulation of protein content is polyubiquitination, which is required for a protein to be degraded by the proteasome (Su & Wang 2010). In order to investigate the possible rapid effect of TH on ubiquitinated protein content, the cardiomyocyte cultures were treated with T₃ (10 nmol/l) for 5, 10, 15, and 30 min. Then, we analyzed the content of ubiquitinated proteins by western blotting using a specific antibody. The cardiomyocytes briefly treated with T₃ showed lower levels of ubiquitinated proteins (P<0.01) when compared with control cells (Fig. 4). These results demonstrate for the first time that T₃ was able to reduce the total level of protein ubiquitination in isolated cardiomyocytes.

T₃ rapidly increases miR-350 levels in isolated cardiomyocytes

Considering that T₃ modulates different miRs in cardiomyocytes and that AT1R is a target of miR-350, we hypothesized that T₃ might modulate this miR in
cardiomyocytes and indirectly contribute to the increase in AT1R levels after rapid T3 treatment. Then, we investigated whether there was an effect exerted by T3 on miR-350 expression in cardiomyocyte short-term cultures. The cardiomyocytes were treated briefly with T3 (10 nmol/l) and the miR-350 expression was analyzed by real-time RT-PCR. The miR-350 expression was increased after T3 treatment for 5 min (P<0.05 vs control), and this increase was maintained through 30 min (P<0.05 vs control) of T3 treatment (Fig. 5). This result shows that T3 rapidly increases the miR-350 in isolated cardiomyocytes.

Discussion

We have recently reported that T3 rapidly increases AT1R levels in cultured cardiomyocytes (Diniz et al. 2009), and this increase may be associated with hypertrophic effect of TH in cardiac tissue. Taking this into account, this study was designed to gain further insight into the possible molecular mechanisms involved in this effect. In this study, we confirmed that T3 rapidly increases both the mRNA and protein levels of AT1R and demonstrated that different mechanisms might be involved in this rapid effect promoted by TH.

Initially, we analyzed whether the effect of T3 upon AT1R levels involves translational and transcriptional events. The use of inhibitors of mRNA synthesis and protein synthesis showed that the transcriptional and translational mechanisms are involved in the rapid modulation of AT1R induced by T3 in cardiomyocyte cultures. In fact, there are some studies in the literature demonstrating that rat AT1R expression is regulated by translational mechanisms via cytosolic proteins that interact with the 5'-UTR of the receptor mRNA (Krishnamurthi et al. 1999, Ji et al. 2004, Lee et al. 2006). Although there is no consensus sequence for TH in the AT1R gene promoter, this gene promoter has

Figure 3 Analysis of the poly-A tail length of the AT1R mRNA by RACE-PAT. Image (A) shows a single gel representative of all experiments. Smearing pattern of PCR products of samples in ethidium bromide-stained 2.5% agarose gel. The top of the smear (line broken) indicates the longest amplified fragment, which represents the poly-A tail size plus 106 bases upstream, according to the AT1R primer used. Image (B) shows the poly-A tail length of the AT1R mRNA expressed as a percentage of control. The cardiomyocytes were treated with serum-free medium in control cells, or with serum-free medium containing 10 nM/l T3 for 5, 10, 15, and 30 min. The letter 'L' indicates the DNA ladder of 100 bp. *P<0.01 vs control. Number (n) represents the different cardiomyocyte preparations (n=5).

Figure 4 Ubiquitinated protein content in cardiomyocyte cultures determined by western blotting. Image (A) shows a single gel representative of all experiments and image (B) shows the data quantification as a percentage of control. The cells were treated with serum-free medium containing 10 nM/l T3 for 5, 10, 15, and 30 min or serum-free medium alone in control cells. The multiple bands for the ubiquitinated proteins were quantified using densitometry and then were normalized by the actinin levels and were expressed as percentage in relation to control. *P<0.01 vs control. Number (n) represents the different cardiomyocyte preparations (n=4).

G P DINIZ and others. T3 affects AT1R expression by distinct mechanisms
and LDL, which lead to upregulation of AT1R, causing destabilization of AT1R. Further, factors downregulate AT1R expression. In this context, angiotensin II and growth factors, which downregulate AT1R expression, have been studied. There is an increasing body of evidence that posttranscriptional rather than transcriptional mechanisms govern modulation of AT1R gene expression. In this context, angiotensin II and growth factors, which downregulate AT1R gene regulation, cause destabilization of AT1R mRNA, whereas insulin and LDL, which lead to upregulation of AT1R expression, induce stabilization of the AT1R mRNA (Nickenig et al. 2001). Poly-A tail elongation is one of the most important posttranscriptional mechanisms known to increase transcript stability, as it makes the mRNA less sensitive to degradation by RNases (Munroe & Jacobson 1990, Salles et al. 1999). The addition of adenine residues to the transcript's 3'-UTR confers stability to the latter, as the poly-A binding protein binds to the poly-A tail, protecting it from exoribonuclease attack (Bernstein et al. 1989, Sachs 1990, Ross 1995) and also enabling better attachment of the transcript to the cap region, generating higher translation efficiency (Kapp & Lorsch 2004). The exact means by which T3 rapidly increases the AT1R mRNA polyadenylation is unknown. However, some studies have demonstrated that mRNA stability dependent on the poly-A tail length is regulated by T3 (Krane et al. 1991, Brunetto et al. 2012). In parallel to its transcriptional and translational effects on the AT1R, T3 also exerts a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as translational efficiency, resulting in the rapid increase in AT1R mRNA expression as well as in its protein levels. In fact, we have detected an increased AT1R protein content in cardiomyocytes treated for 5–30 min with T3.

It is already well established that the cytoskeleton exerts an important role as a regulator of mRNA stability (Singer 1992, Shannon et al. 1998) and that TH acutely induces actin cytoskeleton rearrangement (Silva et al. 2006). Moreover, an alternative microtubule-dependent endocytic pathway plays an important role in AT1R-mediated uptake of extracellular angiotensin II (Li et al. 2009). Taking this into account, it is possible that the cytoskeleton rearrangement mediated by T3 might also influence the rapid increase in AT1R levels in cardiomyocytes. This is an important point, and future studies are needed to address this question.

A second aim of this study was to identify whether ubiquitination might be altered after treatment with TH. The UPS represents the main mechanism of degradation of intracellular cytosolic and nuclear proteins, with two major biological functions, i.e. ubiquitylation and proteasome-mediated proteolysis (Etlinger & Goldberg 1977). Briefly, before degradation, a target protein undergoes a three-step process that covalently links a polyubiquitin chain to the substrate. Three enzyme components are involved in this process, Ub-activating enzyme (E1), Ub-conjugating enzymes (E2), and ubiquitin protein ligase (E3), which present substrate recognition sites (Hedhli & Depre 2010). Considering that polyubiquitination is an important mechanism required for protein breakdown by the proteasome (Stitt et al. 2004, Su & Wang 2010), our results showed that cardiomyocytes treated with T3 presented a reduction in the polyubiquitinated protein content. Although these results demonstrate relevant insights related to the rapid effect promoted by T3 on cardiomyocytes cultures, it is not possible to conclude...
whether the reduction in the ubiquitination protein content may be contributing to the rapid increase in AT1R levels. However, we cannot discard this possibility.

It is known that in the event of cardiovascular disease, the UPS has been implicated in both protecting and exacerbating cardiac outcomes (Willis et al. 2010).

Therefore, further experiments should be performed to better understand the involvement of UPS in the rapid action of T3 in cardiomyocytes and the real participation of each enzyme (E1, E2, and E3) in this process. A recent study evidenced that hyperthyroidism stimulates multiple proteolytic pathways in skeletal muscle (O’Neal et al. 2009).

In this sense, it is possible that TH may have different effects on the ubiquitination protein levels depending on the tissue and the model used. Considering that modulation on the ubiquitinated protein levels is observed in some models of cardiac hypertrophy (Hedhli & Depre 2010), it is possible to hypothesize that TH-mediated cardiac growth may also be influenced by alteration on the ubiquitinated protein content independent of the AT1R effect per se.

Several studies have demonstrated the importance of miRs not only in cardiovascular development but also in cardiovascular diseases (Thum et al. 2007, 2008, Wang et al. 2009). The miRs have been implicated in the control of diverse biological and pathological processes, including cell differentiation, apoptosis, cell proliferation, and organ development (Plasterk 2006).

They are short, noncoding RNA molecules that act as negative regulators of gene expression by inhibiting mRNA translation or promoting mRNA degradation (Bartel 2004).

A search for predicted miR targets indicated that the rat AT1R is a target of miR-350. Considering this finding, we hypothesized that T3 might modulate this miRNA in cardiomyocytes, which could be eventually contributing to the increase in AT1R levels after rapid T3 treatment. In this study, we demonstrated for the first time that miR-350 expression is rapidly increased after T3 treatment in isolated cardiomyocytes. The possible mechanisms responsible for the increase in miR-350 expression by T3 are unknown. Additionally, whether the altered miR-350 expression observed in cardiomyocytes treated with T3 is involved in mediating physiological or pathological effects of TH in these cells is also not clear yet. In addition, it is important to emphasize that future experiments should be performed to analyze whether miR-350 is able to directly interact with AT1R mRNA and influences its expression.

Indeed, a recent study demonstrated that miR-155 interacts with the 3'UTR of the human AT1R mRNA and inhibits the expression of the AT1R in fibroblasts (Martin et al. 2006).

Taking this into account, it is possible that other miRs might contribute to the regulation of AT1R levels, as this transcript may also be a target for other miRs, according to target prediction using the TargetScan algorithm.

Both adult and neonatal cardiomyocytes have been commonly used as in vitro models for some underlying cellular and molecular mechanisms of the cardiac tissue. However, adult cardiomyocytes are terminally differentiated primary cells and are therefore difficult to work with owing to their short duration of viability.

Although neonatal myocytes are not truly representative of the adult phenotype, these cells are usually cultured at confluence allowing for formation of cell–cell contacts, which provide crucial survival signals (Vlahos et al. 2003). Considering that our study was performed in neonatal cardiomyocyte cultures, it is possible that, depending on the model used, TH may have different effects on the mechanisms investigated in this study. In addition, considering that we analyzed only the rapid effect promoted by TH, we may hypothesize that longer treatment with TH may have distinct effects on these different mechanisms.

It is well known that neonatal cardiomyocytes represent partially differentiated cells. Recent findings suggest that TH is a prime driver of prenatal cardiomyocyte maturation (Chattergoon et al. 2011).

Indeed, angiotensin II is also implicated in the cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells (Xing et al. 2012). Whether the increased AT1R levels might be partially contributing to the TH effect on cardiomyocyte maturation is unknown. In this sense, future studies are needed to address this question.

In summary, this study showed for the first time that, in parallel to its transcriptional and translational effects on the AT1R, T3 also exerts a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability as well as translational efficiency, resulting in the rapid increase in AT1R mRNA expression as well as its protein levels. Additionally, our study demonstrates that T3 rapidly reduces the ubiquitin protein content and, on the other hand, increases miR-350 expression in cardiomyocyte cultures. Finally, this study shows, for the first time, that T3 rapidly modulates distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocyte cultures.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the State of São Paulo; grants 06/61329-7 and 08/01489-5) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development).
References

Cao HJ, Lin HY, Luidens MK, Davis FB & Davis PJ 2009 Cytoplasm-to-nucleus shuttling of thyroid hormone receptor-β1 (Trβ1) is directed from a plasma membrane integrin receptor by thyroid hormone. *Endocrine Research* **34** 31–42. (doi:10.3109/07435800903204082)

Kramer IM, Spindel ER & Chin WW 1991 Thyroid hormone decreases the stability and the poly(A) tract length of rat thyrotropin β-subunit messenger RNA. *Molecular Endocrinology* **5** 469–475. (doi:10.1210/mend-5-4-469)

Liu D & Waxman DJ 2002 Post-transcriptional regulation of hepatic NADPH-cytochrome P450 reductase by thyroid hormone: independent effects on poly(A) tail length and mRNA stability. *Molecular Pharmacology* **61** 1089–1096. (doi:10.1124/mol.61.3.1089)

Received in final form 3 April 2012
Accepted 23 April 2012
Made available online as an Accepted Preprint 23 April 2012