Impact of maternal chromium restriction on glucose tolerance, plasma insulin and oxidative stress in WNIN rat offspring

Inagadapa J N Padmavathi1*, Kalashikam Rajender Rao2* and Manchala Raghunath1

1Division of Endocrinology and Metabolism and 2National Centre for Laboratory Animal Sciences, National Institute of Nutrition, Jamai Osmania PO, Hyderabad 500 007, India

(Correspondence should be addressed to M Raghunath; Email: mraghunath55@yahoo.com)

* (I J N Padmavathi and K R Rao contributed equally to this work)

Abstract

Robust evidence suggests that nutritional insult during fetal development could program the offspring to glucose intolerance, impaired insulin response and insulin resistance (IR). Considering the importance of chromium (Cr) in maintaining carbohydrate metabolism, this study determined the effect of maternal Cr restriction (CrR) on glucose metabolism and plasma insulin in Wistar/NIN (WNIN) rat offspring and the associated biochemical and/or molecular mechanisms. Female, weanling WNIN rats received ad libitum for 12 weeks, a control diet or the same with 65% restriction of Cr and mated with control males. Some of the Cr-restricted dams were rehabilitated from conception or parturition and their pups weaned on to control diet. At the time of weaning, half of the Cr restricted offspring were rehabilitated to control diet while others continued on Cr-restricted diet. Maternal CrR increased fasting plasma glucose, fasting insulin, homeostasis model assessment of IR, and area under the curve of glucose and insulin during oral glucose tolerance test in the offspring. Expression and activity of rate-limiting enzymes of glucose metabolism were comparable among different groups and expression of genes involved in insulin secretion was increased albeit in male offspring whereas antioxidant enzyme activities were decreased in offspring of both genders. Rehabilitation, in general, corrected the changes albeit partially. Maternal dietary CrR induced IR, impaired glucose tolerance in WNIN rat offspring and was associated with increased oxidative stress, which may predispose them to type 2 diabetes in their later life.

Journal of Molecular Endocrinology (2011) 47, 261–271

Introduction

Fetal growth retardation caused by maternal under-nutrition results in obesity, insulin resistance (IR), and associated adult onset diseases such as cardiovascular disease, type 2 diabetes mellitus, and hypertension (Barker et al. 1993). A possible reason for this could be a primary impairment of β-cell development (Dahri et al. 1991) and an overall underdevelopment of endocrine pancreas (Holness 1996). Several animal models have demonstrated that malnutrition during fetal development programs the endocrine pancreas and insulin-sensitive tissues, resulting in IR and diabetes in later life (Snoeck et al. 1990). In utero protein restriction reduces pancreatic β-cell number in rat offspring and blunts insulin secretion in response to oral glucose challenge (Berney et al. 1997, Reusens & Remacle 2001).

We showed earlier that maternal micronutrient restriction increased body fat% especially the central adiposity, impaired plasma lipids, altered glucose tolerance, impaired insulin secretion, increased oxidative stress, and appeared to predispose the Wistar/NIN (WNIN) rat offspring to IR and associated diseases in later life (Venu et al. 2004a,b, 2005, 2008, Padmavathi et al. 2009). Trivalent chromium (Cr), also called glucose tolerance factor, regulates glucose and lipid metabolism (Mertz 1969). Acting as a cofactor for insulin, it enhances glucose utilization by insulin target tissues (Anderson 1992). It facilitates insulin binding to its receptors, activates insulin receptor kinases and inhibits insulin receptor phosphatases (Vincent 2000). Chromodulin, the Cr-binding oligopeptide activities tyrosine kinase activity of insulin receptor in response to insulin (Davis & Vincent 1997). Although epidemiological evidence for the incidence of Cr deficiency per se is limited, several studies in humans and experimental animals report the beneficial effects of Cr supplementation on glucose tolerance and insulin sensitivity (Anderson 1989, Amoikon et al. 1995, Kitchalong et al. 1995, Ravina et al. 1995). Recently, we reported that maternal Cr restriction (CrR) increased body fat% (central adiposity) and was associated with decreased muscle development in WNIN rat offspring (Padmavathi et al. 2010a,b).

Despite the known impact of Cr supplementation on glucose tolerance and insulin sensitivity, effects if any of maternal CrR in programming the offspring to altered glucose metabolism and plasma insulin levels have not yet been reported. Therefore, this study determined the effect of maternal CrR on...
glucose metabolism and plasma insulin levels in WNIN rat offspring.

Materials and methods

Study design

Weanling (21-day old), female rats (n = 30) WNIN strain were obtained from National Centre for Laboratory Animal Sciences (NCLAS) with the approval of the Ethics Committee on animal experiments at National Institute of Nutrition, Hyderabad, India. They were housed individually in polycarbonate cages with wire mesh bottom and maintained at 22±2 °C, under standard lighting conditions (12 h light:12 h darkness cycle). Diets were prepared according to AIN-93G formulation and their Cr content analyzed by atomic absorption spectrometer (Varian Atomic Absorption Spectrometer, Spectra AA 220; Varian India, Agilent Technologies, Forest Hills, VIC, Australia) using reduced flame. The animal feeding and experimental protocol for this study has been described previously (Padmavathi et al. 2010a).

Oral glucose tolerance test (OGTT) was performed (as given below) in WNIN female rats (mothers to be) after 3 months on their respective diets (i.e. before mating) and in the offspring of different groups at quarterly intervals from 3 months of their age. The offspring were sacrificed at 15 months of age after performing the OGTT, the liver and pancreas were dissected out, weighed, snap frozen in liquid nitrogen, and stored at −80 °C till analyzed.

Glucose tolerance and plasma insulin levels

Blood samples were collected from supra-orbital sinus of overnight fasted rats. Glucose was then administered orogastrically at a dose of 2.5 g/kg body weight and blood samples were collected from the tail vein at 30, 60, and 120 min under light ether anesthesia. Plasma glucose was estimated using the commercial kit (Bio-system, Barcelona, Spain) and insulin by the RIA kit (BRIT, Mumbai, India). The area under the curve (AUC) of glucose and insulin during OGTT were computed by the trapezoidal method (Mathews et al. 1990). The indices of IR such as homeostasis model assessment of IR (HOMA-IR) index and the ratio of glucose AUC to insulin AUC during OGTT were calculated as mentioned earlier (Padmavathi et al. 2009).

Activity of enzymes of glucose metabolism

Liver was homogenized and processed as described earlier (Venu et al. 2005) to get the microsomal and cytosolic fractions. Protein content was estimated by the bicinchoninic acid method (Smith et al. 1985) and the activities of the rate-limiting enzymes of glucose metabolism, antioxidant enzymes, and oxidative stress markers were determined as follows.

Hepatic glucokinase (GCK) activity was assayed in the cytosolic fraction by the reduction of NAPD at 340 nm (Pilkis 1975). One unit of GCK represents the phosphorylation of 1 μmol of glucose per minute. Pyruvate kinase (PK) activity was determined in liver cytosol by the oxidation of NADH at 340 nm (Bucher & Pfleiderer 1955) and one unit of PK is the nanomoles of phosphoenolpyruvate hydrolyzed per minute.

Glucose-6-phosphatase (G6PC) activity was monitored at 510 nm in the microsomal fraction by the formation of quinoneimine. One unit of G6PC is defined as 1 μmol of glucose-6-phosphate formed per minute (Gierow & Jergil 1982). Fructose-1,6-bisphosphatase (FBP) was determined in the cytosolic fraction by following the rate of NADPH formation at 340 nm (Marcus et al. 1982) and one unit of this enzyme represents the formation of 1 μmol of fructose-6-phosphate per minute.

Gene expression in liver and pancreas by semi-quantitative PCR

Total RNA was isolated from 100 mg each of liver and pancreatic tissues using Qiagen reagent. This was followed by the synthesis of cDNA from 2 μg of total RNA using Invitrogen Kit (Invitrogen Life Technologies). Primers were designed with the aid of primer quest software (Integrated DNA Technologies, Coralville, IA, USA). Semi-quantitative PCR was conducted to analyze the expression of Gck (5′-CCTTAGACCCTGGAAGAAC-3′; 5′-AGCATGTGGTTCTCCTTG-3′), Pklr (5′-CCAGGGACCCTGAGTACCA-3′; 5′-AGTGGC-ACCTCAGTGGT-3′), phosphoenolpyruvate carboxykinase (Pck; 5′-CCAGAGTCCACCATCTTT-3′; 5′-CTCCTGAGACGGGGAAC-3′), G6pc (5′-AGCT-CCTGGCCCTGTGATAA-3′; 5′-AAATGTAGCCGCAAGTGA-3′), preproinsulin 1 (Ins1; 5′-CAGCTTGGTGTTGCTCACC-3′; 5′-CCAGTTGCTAGGAGGAC-3′), and Ins2 (5′-CAGCACCCTTTGTGGTCTCA-3′; 5′-CAGTGCAGGCTCTGAAAGG-3′) with the internal standard 18S rRNA (5′-CCAGAGCAGAACATTTTGGCAG-3′; 5′-AAATGGGACCGGCTTATGACC-3′). The amplified products were resolved on 1.2% agarose gel.

Table 1 Glucose tolerance and insulin resistance indices in female Wistar/NIN rats. Values are mean ± S.E.M. (n=6)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CrC</th>
<th>CrR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting glucose (mmol/l)</td>
<td>4.73±0.387</td>
<td>4.64±0.167</td>
</tr>
<tr>
<td>Fasting insulin (pmol/l)</td>
<td>398±83.8</td>
<td>411±54.5</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>11.6±1.36</td>
<td>12.7±1.50</td>
</tr>
<tr>
<td>Glucose AUC (mmol/l per h)</td>
<td>11.9±0.714</td>
<td>11.7±0.508</td>
</tr>
<tr>
<td>Insulin AUC (pmol/l per h)</td>
<td>815±146</td>
<td>801±88.0</td>
</tr>
<tr>
<td>Glucose AUC/insulin AUC</td>
<td>0.015±0.002</td>
<td>0.015±0.001</td>
</tr>
</tbody>
</table>
gel electrophoresis and the image was quantified with the Bio-Rad gel documentation system using Quantity One Software (Bio-Rad Laboratories). Results are expressed as the ratio of the intensities of the band of the gene of interest to that of the 18S rRNA.

Oxidative stress and antioxidant defense markers

Oxidative stress and antioxidant status were determined in liver homogenate. Thiobarbituric acid reactive substances was determined as a measure of lipid peroxidation (Balasubramanian et al. 1988) and protein carbonyls were quantified spectrophotometrically at 370 nm using 2,4-dinitrophenylhydrazine (Uchida et al. 1998). Reduced glutathione (GSH) and oxidized glutathione (GSSG) were estimated spectrofluorimetrically at excitation and emission wavelengths of 350 and 420 nm, respectively, using ortho-phthalaldehyde (Hissin & Hilf 1976).

Superoxide dismutase (SOD) activity was estimated in the cytosolic fraction (100 000 g supernatant; Table 2 Daily food intake in male and female offspring of different groups at 9 and 15 months of their age. Values are mean ± S.E.M. (n=6)

<table>
<thead>
<tr>
<th>Months</th>
<th>CrC</th>
<th>CrR</th>
<th>CrRC</th>
<th>CrRP</th>
<th>CrRW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food intake (g)</td>
<td>9</td>
<td>15·0±0·341</td>
<td>15·7±0·209</td>
<td>15·5±0·362</td>
<td>15·1±0·316</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15·1±0·341</td>
<td>15·9±0·209</td>
<td>15·4±0·326</td>
<td>14·9±0·316</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food intake (g)</td>
<td>9</td>
<td>12·4±0·476</td>
<td>13±4±0·158</td>
<td>12·7±0·519</td>
<td>12·5±0·421</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>12·2±0·478</td>
<td>13·0±0·160</td>
<td>12·0±0·518</td>
<td>12·8±0·422</td>
</tr>
</tbody>
</table>

Figure 1 Effect of maternal Cr restriction and rehabilitation on glucose tolerance and plasma insulin levels in WNIN male offspring at different ages. Panel A, fasting glucose; panel B, fasting insulin; panel C, HOMA-IR; panel D, glucose AUC during OGTT; panel E, insulin AUC during OGTT; panel F, glucose AUC/insulin AUC during OGTT. Values are mean ± S.E.M. (n=6). Bars without a common superscript (‘a and b’) are different at P<0.05 by one-way ANOVA followed by post hoc least significant difference (LSD) test.
Marklund & Marklund (1974) and one unit of SOD activity is the amount of the enzyme that inhibits the rate of auto-oxidation of pyrogallol by 50% per minute. The activity of catalase was measured by the reduction of hydrogen peroxide (Aebi 1984) whereas glutathione peroxidase (GPx) was determined in the cytosolic fraction by the oxidation of reduced glutathione by cumene hydroperoxide (Paglia & Valentine 1967). One unit of GPx is the micromoles of NADPH oxidized per minute.

Statistical analysis
All values are presented as mean ± S.E.M. Data were analyzed using unpaired Student’s t-test to identify differences between control and restricted mothers. One-way ANOVA followed by the multiple range test or least significant difference method was used appropriately to analyze data in the offspring. Wherever heterogeneity of variance was observed, differences between the groups were tested by non-parametric Mann–Whitney U test. The differences were considered significant at P < 0.05.

Results

Glucose tolerance and plasma insulin levels in female WNIN rats on CrR
Plasma Cr was lower (P < 0.05) in CrR than CrC (chromium control) rats (Padmavathi et al. 2010a). However, there was no difference between CrC and CrR rats in the levels of fasting plasma glucose and insulin or glucose AUC and insulin AUC during OGTT (Table 1). In line with these observations, IR as assessed by HOMA index or the ratio of glucose AUC to insulin AUC during OGTT was comparable between the female CrC and CrR rats (mother to be) before mating (Table 1).

Growth characteristics of control, Cr-restricted and rehabilitated offspring
Food intake was comparable among the offspring of different groups at all the time points studied (Table 2). Plasma Cr levels were lower (P < 0.05) in CrR than CrC offspring and three rehabilitation regimes restored the levels to control from 3 months of their age (Padmavathi et al. 2010a). However, body weight was higher
(P<0.05) in CrR than CrC offspring of both the sexes from 12 months of age and rehabilitation appeared to correct the body weight change partially albeit at 12 months of age but not later (Padmavathi et al. 2010a).

Glucose tolerance and plasma insulin levels to glucose challenge

Males
CrR offspring had higher (P<0.05) fasting plasma glucose and insulin at 9 and 15 months of age (Figs 1A and B and 2) than controls. While rehabilitation restored glucose levels, it had varied effects on plasma insulin levels. At 9 months of age, Cr rehabilitated from parturition (CrRP) and Cr rehabilitated from weaning (CrRW) appeared to mitigate the increased plasma insulin levels whereas Cr rehabilitated from conception (CrRC) had only a partial effect. On the other hand, at 15 months of age CrRC but not CrRP and CrRW restored these changes (Figs 1A and B and 2). HOMA-IR was higher (P<0.05) in CrR at 9 and 15 months of age and the changes in general appeared to be corrected by rehabilitation (Fig. 1C).

Glucose AUC and insulin AUC during OGTT were higher (P<0.05) in CrR than CrC at 9 but not 15 months of age (Figs 1D and E and 2) and rehabilitation in general mitigated the changes. Nevertheless, the ratio of glucose AUC to insulin AUC was comparable among different groups at both the time points (Fig. 1F).

Females
Fasting plasma glucose was higher (P<0.05) in CrR than CrC both at 9 and 15 months of age. Only CrRC appeared to correct the change at 9 months of age while all rehabilitation regimes did so at 15 months of age (Figs 3A and 4). On the other hand, fasting insulin was higher (P<0.05) in CrR than CrC offspring albeit at 15 months of age only and rehabilitation did not appear to correct the change (Figs 3B and 4). As a consequence, HOMA-IR was higher (P<0.05) in CrR than CrC both at 9 and 15 months of age. Curiously,
CrRP and CrRW but not CrRC appeared to correct the change partially at 9 months, while no rehabilitation regime appeared to mitigate the change at 15 months of age (Fig. 3C).

Glucose AUC and insulin AUC during OGTT were higher \((P<0.05)\) in CrR than CrC offspring at 15 but not 9 months of age. While all three rehabilitation regimes appeared to restore the glucose AUC to control levels, only CrRP but not CrRC and CrRW appeared to correct insulin AUC (Figs 3D and E and 4). The ratio of glucose AUC to insulin AUC was decreased \((P<0.05)\) in CrR offspring compared with CrC but only at 15 months of age.

CrC CrRW CrRPCrRCCrR

Figure 4 Effect of maternal Cr restriction and rehabilitation on plasma glucose and insulin levels at various time points (0, 30, 60, and 120 min) during OGTT in WNIN female offspring. Panel A, plasma glucose kinetics at 9 months of age; panel B, plasma glucose kinetics at 15 months of age; panel C, plasma insulin kinetics at 9 months of age; panel D, plasma insulin kinetics at 15 months of age. Values are mean \((n=6)\).

CrC CrR CrRC CrRP CrRW

Figure 5 Effect of maternal Cr restriction and rehabilitation on expression of genes of glucose metabolism by semi-quantitative PCR in liver in WNIN male (A) offspring (at 18 months of age) and female (B) offspring (at 15 months of age); gel picture for each gene is the representation of different groups. Values are mean \(\pm\) S.E.M. \((n=6)\).
months of age and rehabilitation in general mitigated this change (Fig. 3F).

Gene expression and enzyme activity

Gene expression of hepatic GCK, PK, Pck, and G6PC, the enzymes important in glycolysis and gluconeogenesis was comparable among offspring of different groups (in both genders; Fig. 5A and B).

The activity of hepatic GCK was lower ($P<0.05$) in female CrR than CrC offspring and all rehabilitation regimes corrected this change. Unlike females, GCK activity was comparable among male offspring of different groups. However, activities of PK, G6PC, and FBP were comparable among offspring of both sexes in different groups (Table 3).

Expression of $Ins1$ and $Ins2$ genes was higher ($P<0.05$) in the pancreas of male CrR than CrC offspring. While no rehabilitation regime could restore the change in $Ins1$ expression, CrRP and CrRW but not CrRC corrected the change in $Ins2$ expression (Fig. 6A). In female offspring, expression of $Ins1$ was comparable among groups while curiously, expression of $Ins2$ was lower ($P<0.05$) in CrR than CrC offspring. However, rehabilitation in general corrected changes in $Ins2$ gene expression (Fig. 6B).

Oxidative stress and antioxidant status

Males

Malondialdehyde (MDA) levels were higher ($P<0.05$) in CrR than CrC offspring and CrRC and CrRP restored this change (Table 4). However, protein carbonyls, glutathione (reduced and oxidized) levels, and catalase activity were comparable among different groups.
Interestingly, SOD and GPx activities were lower \((P<0.05)\) in CrR than CrC offspring (Table 4). While CrRP and CrRW corrected the change only in SOD activity, all rehabilitation regimes corrected the reduced GPx activity.

Females

Malondialdehyde, protein carbonyls and glutathione (reduced and oxidized) levels were comparable among female offspring of different groups. However, catalase, SOD, and GPx activities were lower \((P<0.05)\) in CrR than CrC. While no rehabilitation regime could correct the decrease in SOD and GPx activities, CrRC and CrRP but not CrRW could correct the reduced catalase activity (Table 4).

Discussion

We showed earlier that micronutrient restriction *in utero* predisposed rat offspring to glucose intolerance and altered insulin secretion (*Venu et al*. 2004*ab*, 2005, 2008, Padmavathi *et al*. 2009). Cr supplementation is known to modulate body composition, improve glucose tolerance and insulin sensitivity (*Anderson 1989, Mertz 1993*). Recently, we reported that chronic maternal dietary Cr (65% restriction) irreversibly increased body fat\% (especially visceral adiposity) and decreased muscle mass (*Padmavathi et al*. 2010*ab*) in WNIN rat offspring, despite comparable (to controls) food intake suggesting the effects to be due to maternal CrR-induced programming of the fetal body composition (*Padmavathi et al*. 2010c, Vincent & Rasco 2010). Although there was some difference in plasma Cr levels between mothers and offspring, at the levels of dietary CrR employed, they were significantly lower in CrR than controls in both the mothers (35\%) and the offspring (57\%). In this study, effects of CrR *per se* and of maternal Cr on glucose metabolism and plasma insulin levels were elucidated in the WNIN rat model.

In line with our reports in maternal magnesium or zinc restricted rat offspring (*Venu et al*. 2005, Padmavathi *et al*. 2009), this study showed that chronic dietary CrR *per se* did not affect glucose tolerance and IR in WNIN female rats. However, they are at variance with the reported effects of Cr deficiency in human subjects (*Offenbacher & Pi-Sunyer 1980*). This lack of effect of CrR *per se* could be due to moderate Cr deficiency observed in CrR rats and/or insufficient duration of Cr deficiency and/or the use of a different species (rat).

Chronic maternal dietary CrR induced fasting hyperglycemia, hyperinsulinemia increased HOMA-IR, altered the kinetics of blood glucose and insulin during the OGTT, impaired glucose tolerance and resulted in postprandial hyperinsulinemia to glucose challenge and mitigation of these changes by rehabilitation was albeit partial. These observations are in agreement with studies reporting impaired glucose tolerance in the later life of diet-restricted rat offspring (*Dahri et al*. 1991, *Langley et al*. 1994). However, they disagree with the decreased capacity of insulin secretion to a glucose challenge in the offspring born to WNIN rat dams on magnesium and zinc deficiencies (*Venu et al*. 2005, 2008, Padmavathi *et al*. 2009). Considering that IR and/or altered insulin secretion exist before the onset of fasting and

| Table 4 Oxidative stress and antioxidant status in liver of Wistar/NIN rat offspring of different groups. Values are mean\(\pm\)S.E.M. \((n=6)\) |
|------------------|------------------|------------------|------------------|------------------|------------------|
| | CrC | CrR | CrRC | CrRP | CrRW |
| **Males** | | | | | |
| MDA (nmol/mg) | 0.540 ± 0.025\(^a\) | 0.848 ± 0.044\(^b\) | 0.565 ± 0.077\(^a\) | 0.606 ± 0.048\(^a\) | 0.821 ± 0.025\(^a\) |
| Protein carbonyls (nmol/mg protein) | 2.32 ± 0.153 | 2.09 ± 0.117 | 2.17 ± 0.071 | 2.11 ± 0.094 | 2.40 ± 0.102 |
| GSH (μmol/mg) | 3.58 ± 0.157 | 4.11 ± 0.212 | 3.39 ± 0.458 | 3.24 ± 0.186 | 4.03 ± 0.096 |
| GSSG (μmol/mg) | 6.00 ± 0.452 | 8.18 ± 0.682 | 7.56 ± 0.821 | 7.97 ± 0.803 | 7.13 ± 0.745 |
| Catalase (units/mg) | 0.110 ± 0.006 | 0.102 ± 0.008 | 0.107 ± 0.008 | 0.114 ± 0.006 | 0.099 ± 0.006 |
| SOD (units/mg) | 7.79 ± 0.428\(^a\) | 6.12 ± 0.553\(^b\) | 6.21 ± 0.249\(^a\) | 7.30 ± 0.553\(^a\) | 6.94 ± 0.299\(^a\) |
| GPx (units/mg) | 0.228 ± 0.014\(^a\) | 0.165 ± 0.024\(^b\) | 0.184 ± 0.016\(^a\) | 0.259 ± 0.029\(^a\) | 0.215 ± 0.017\(^a\) |
| **Females** | | | | | |
| MDA (nmol/mg) | 0.358 ± 0.053 | 0.347 ± 0.020 | 0.405 ± 0.033 | 0.340 ± 0.023 | 0.327 ± 0.024 |
| Protein carbonyls (nmol/mg protein) | 2.44 ± 0.143 | 2.53 ± 0.054 | 2.38 ± 0.135 | 2.65 ± 0.061 | 2.52 ± 0.103 |
| GSH (μmol/mg) | 3.74 ± 0.140 | 3.40 ± 0.268 | 3.60 ± 0.201 | 3.60 ± 0.361 | 3.17 ± 0.367 |
| GSSG (μmol/mg) | 6.93 ± 0.758 | 8.00 ± 0.660 | 6.64 ± 0.656 | 7.01 ± 0.413 | 8.63 ± 0.575 |
| Catalase (units/mg) | 0.074 ± 0.004\(^a\) | 0.049 ± 0.002\(^b\) | 0.070 ± 0.003\(^b\) | 0.066 ± 0.006\(^b\) | 0.051 ± 0.002\(^b\) |
| SOD (units/mg) | 7.79 ± 0.423\(^a\) | 5.97 ± 0.393\(^b\) | 6.18 ± 0.298\(^a\) | 6.49 ± 0.366\(^b\) | 6.90 ± 0.184\(^b\) |
| GPx (units/mg) | 0.293 ± 0.018\(^a\) | 0.207 ± 0.028\(^b\) | 0.177 ± 0.012\(^b\) | 0.179 ± 0.019\(^b\) | 0.208 ± 0.067\(^b\) |

Means without a common superscript \(('a' \text{ and } 'b')\) are significantly different at \(P<0.05\) by one-way ANOVA followed by post hoc least significant difference (LSD) test.
postprandial hyperglycemia which lead to type 2 diabetes (Weyer et al. 1999, Dostou & Gerich 2001),
our findings suggest the predisposal of the CrR offspring to type 2 diabetes. The finding that the changes observed
at 9 months of age were not seen later in male offspring is in agreement with our similar findings in Mg
restricted rat offspring (Venu et al. 2008). Although the reasons for the transient nature of the effect remains
to be understood, the findings do indicate the importance of maternal Cr status in regulating glucose tolerance and plasma insulin levels in later life of the offspring.

In general, blood glucose levels are regulated by a balance between glucose uptake by peripheral tissues and
glucose secretion by the liver. An imbalance between systemic glucose delivery (endogenous glucose production) and glucose utilization leads to hyperglycemia (Mevorach et al. 1998). Despite the fasting hyperglycemia and impaired glucose tolerance observed in the CrR offspring, that there were no changes in the gene expression of the rate-limiting enzymes of glycolytic and gluconeogenic pathways, probably indicates that maternal CrR may not alter the expression of these enzymes at transcription level and the observed phenotypic changes could be due to post-transcriptional and/or translational and/or post-translational modifications.

Although enzyme protein expression was not assessed, the observation that activities of the key enzymes of glycolysis and gluconeogenesis were in general comparable among different groups (but for lower GCK in CrR than CrC female offspring and rehabilitation corrected the defect) appear to suggest that maternal CrR may not affect glucose metabolism in the offspring. On the other hand, decreased GCK activity in CrR female offspring could lower glucose catabolism raising intracellular glucose levels that in turn could impair the clearance of circulating glucose and result in hyperglycemia. Such increase in plasma glucose levels may not be conducive to hepatic gluconeogenesis and hence the comparable activities of gluconeogenic enzymes in these offspring. These findings not only agree with mRNA expression data but may also suggest impaired glucose metabolism (decreased glycolysis?) as a possible reason for the fasting hyperglycemia. Although the actual mechanism(s) need to be studied, the present results are the first to the best of our knowledge to demonstrate the effect of maternal CrR on glucose tolerance in the offspring.

Insulin genes in rodents form a two-gene system (Soares et al. 1985, Wentworth et al. 1986) composed of
preproinsulin 2 (Ins2), an ortholog to the insulin genes in the other mammals and Ins1, a rodent-specific retrogene. Ins1 and Ins2 are expressed in pancreas and both encode proinsulin peptides that include signal peptide, B chain, C-peptide, and A chain. In line with the observed hyperinsulinemia, expression of Ins1 and Ins2 genes were increased in CrR male offspring indicating that maternal CrR may affect the transcription of the insulin genes, resulting in hyperinsulinemia (fasting and post-glucose). However, it was surprising that in female CrR offspring Ins2 expression was indeed downregulated compared with CrC while expression of Ins1 was unaffected. The reasons for these discrepancies and gender differences need to be deciphered.

In line with our earlier reports on vitamin restricted rat offspring (Venu et al. 2004), maternal CrR increased oxidative stress (MDA levels) and decreased activities of antioxidant enzymes in the offspring. These findings are in agreement with literature that maternal undernutrition is associated with stress in the offspring (Hostetler & Kincaid 2004) and agrees with increased corticosteroid stress we reported earlier in these offspring (Padmavathi et al. 2010a). The present results are in agreement with substantial evidence that increased oxidative stress and/or decreased antioxidant defense is associated with IR that could lead to type 2 diabetes at a later date (Giugliano et al. 1995, Vijayalingam et al. 1996, Urakawa et al. 2003). However, the actual mechanism(s) and/or the causal relationships among the increased oxidative stress, IR, and impaired glucose tolerance in the CrR offspring remain to be deciphered yet.

Overall, these findings stress the importance of maternal Cr status in modulating carbohydrate metabol-
ism and plasma insulin levels in the offspring. Although much work needs to be done to decipher the underlying/associated mechanism(s), they have unequivocally demonstrated the effects of maternal CrR per se in programming the offspring to glucose intolerance and IR and the possible involvement of increased oxidative stress in the process. Taken together with our earlier demonstration of increased body fat%, especially the visceral adiposity (Padmavathi et al. 2010a) and decreased myogenesis and altered muscle function in CrR offspring (Padmavathi et al. 2010b), the present findings appear to suggest the probable predisposal of the CrR offspring to type 2 diabetes in their later life.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by a research grant to M R from the Department of Biotechnology, Government of India, New Delhi, India (project no. BT/PR2832/Med/14/390/2001).
Acknowledgements

The authors acknowledge the Council for Scientific and Industrial Research (CSIR) and the Indian Council of Medical Research (ICMR) for awarding research fellowships.

References

Journal of Molecular Endocrinology (2011) 47, 261–271

www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 08/24/2019 11:28:07PM
via free access

Received in final form 11 July 2011
Accepted 28 July 2011
Made available online as an Accepted Preprint 28 July 2011