Aromatase expression in *Xenopus* oocytes: a three cell-type model for the ovarian estradiol synthesis

M Gohin¹,², P Bodinier², A Fostier², J Bobe² and F Chesnel¹

¹CNRS/IIDR (UMR 6061), IFR140 GFAS, Université de Rennes I, 2 Avenue du Pr. Léon Bernard, 35043 Rennes Cedex, France
²Institut National de la Recherche Agronomique, INRA, Scribe UR1037, IFR140 GFAS, Campus de Beaulieu, 35000 Rennes Cedex, France

(Correspondence should be addressed to F Chesnel; Email: franck.chesnel@univ-rennes1.fr; J Bobe; Email: julien.bobe@rennes.inra.fr)

Abstract

In contrast to the classical model describing the synthesis of androgens and estrogens as restricted to somatic cells, a previous study demonstrated that *Xenopus laevis* oocytes participate in androgen synthesis. The objective of our study was to determine whether *Xenopus* oocytes are also involved in estrogen synthesis. More precisely, we analyzed aromatase expression by *in situ* hybridization and RT-QPCR and measured aromatase activity. Aromatase, the enzyme responsible for estrogen synthesis, appears to be expressed and active not only in the follicular cells but also in the vitellogenic oocytes. During late oogenesis, aromatase oocyte expression and activity decreased concomitantly with the trend observed in surrounding follicular layers. In order to investigate the role of estradiol-17β (E₂), we studied its effect on oocyte meiotic resumption. It appears that, as in *Rana pipiens*, E₂ inhibited the follicle-enclosed maturation of *Xenopus* oocytes, likely through inhibition of LH-induced maturation-inducing steroid synthesis. In addition, E₂ exerted a slight enhancing action on denuded oocyte maturation whose biological significance remains unclear. Together, our results demonstrate that *Xenopus* oocyte significantly participates in ovarian E₂ synthesis and this may be a common feature of vitellogenic vertebrates.

Journal of Molecular Endocrinology (2011) **47**, 241–250

Introduction

Estradiol-17β (E₂) is known to have pleiotropic effects and important roles in female reproductive function in vertebrates, and characterizing the regulation and function of E₂ synthesis during ovarian follicular growth is a major challenge in reproductive biology. Throughout oogenesis, E₂ is synthesized by ovarian follicles and secreted into the blood. Growth and development of *Xenopus laevis* follicles are accompanied by shifts in steroidogenic abilities, with E₂ produced by medium-sized follicles and androgen and progesterone secreted by large, postvitellogenic follicles (Fortune 1983). In non-mammalian vertebrates, the best-known endocrine effect of E₂ is the stimulation of yolk synthesis through hepatic vitellogenins synthesis and secretion into blood circulation. Circulating vitellogenins are taken up by the oocyte leading to oocyte yolk accumulation and growth (Rasar & Hammes 2006). Yolk will provide nutritional reserves necessary for embryo development. More recently, E₂ was also shown to enhance progesterone-induced ovulation, possibly through a stimulatory effect on gonadotropin synthesis (Ogawa et al. 2011). In addition to E₂ endocrine effects, E₂ may have autocrine and/or paracrine effects, as E₂ inhibits follicle-enclosed oocyte maturation through inhibition of maturation-inducing steroid (MIS) synthesizing enzymes in vitellogenic species such as *Rana pipiens* (Schuetz 1972, Spiegel et al. 1978, Lin & Schuetz 1983, 1985) or *Onchorhynchus mykiss* (Jalabert et al. 1984). This steroid may also activate transcription of particular genes within the oocyte that would play a role in oocyte development, such as IGFBP3, the expression of which has been shown to be positively regulated by E₂ in trout oocytes (Kamangar et al. 2006).

E₂ is synthesized by the cytochrome P450 aromatase enzyme that converts androstenedione and testosterone into estrone (E₁) and E₂ respectively. In *Xenopus*, two variants are expressed in the gonads and a third variant is expressed in the brain (Iwabuchi et al. 2007). As for mammals (Gore-Langton & Armstrong 1988) and fish (Nagahama et al. 1995), a two cell-type model has been proposed to describe amphibian E₂ synthesis by the whole follicle (Kwon & Ahn 1994, Ahn et al. 1999). According to this classical model, theca cells provide androgens to granulosa cells that, in turn, aromatize androgens into estrogens. Nevertheless, in *Xenopus laevis*, some steroidogenic activity had been previously reported in oocytes (Yang et al. 2003). Besides oocyte ability to metabolize exogenous steroid precursors (Reynhout & Smith 1973, Sanyal et al. 1973, Fouchet et al. 1975, Thibier-Fouchet et al. 1976), 17-hydroxylase/17,20-lyase (Cyp17) appeared to be expressed only by...
suggesting that Xenopus is a key enzyme mediating androgen production. Moreover, Xenopus oocytes were shown to be required for E₂ production by growing stage IV follicles in response to gonadotropin (Sretarugsa & Wallace 1997). Thus, the objective of this study was to determine oocyte contribution to E₂ synthesis in Xenopus laevis by characterizing the expression and activity of the estrogenic enzyme, the aromatase. Moreover, contradictory results have been reported concerning E₂ effects on progesterone-induced oocyte maturation in Xenopus laevis. Some authors have shown less potentiating effects after E₂ pretreatment on in vitro denuded oocyte maturation (Hanocq-Quertier & Baltus 1981, Pickford & Morris 1999), while antagonistic effects have also been reported (Baulieu et al. 1978). Therefore, we finally investigated the effect of E₂ on meiotic resumption of either follicle-enclosed or denuded oocytes.

Materials and Methods

Animals and tissue collections

Investigation and animal care were conducted in compliance with French and European regulations on the care and use of laboratory animals. Xenopus laevis ovarian pieces were surgically removed from anesthetized adult females, purchased from NASCO (Fort Atkinson, WI, USA). Stage IV (st IV, ~800 μm diameter (Dumont 1972)), and stage VI (st VI PI, >1200 μm diameter, in prophase I of meiosis) ovarian follicles were manually isolated from ovarian pieces or from individual follicles after incubation in calcium-free OR2 buffer supplemented with collagenase (type IA, Sigma–Aldrich; final concentration = 275 IU/ml). Ovarian tissues were frozen in liquid nitrogen and stored at −80 °C until use. For in situ hybridization, ovarian tissues were fixed in Dietrich’s fixative (10%

KCl, 1 mM CaCl₂, 1 mM MgCl₂, and 5 mM HEPES, pH 7.4). Corresponding oocytes and follicular cells were manually isolated from ovarian pieces or from individual follicles after incubation in calcium-free OR2 buffer supplemented with collagenase (type IA, Sigma–Aldrich; final concentration = 275 IU/ml). Ovarian tissues were frozen in liquid nitrogen and stored at −80 °C until use. For in situ hybridization, ovarian tissues were fixed in Dietrich’s fixative (10% formaldehyde 40%, 29% ethanol 95%, and 2% glacial acetic acid) overnight at 4 °C, rinsed in diethylpyrocarbonate (DEPC) water five times for 10 min, and then stored at 4 °C in 50% ethanol until paraffin embedding.

In vitro oocyte maturation

Follicle-enclosed and denuded oocytes were incubated for 15 h at 20 °C in modified OR2 buffer supplemented with 40 IU/ml human chorionic gonadotropin (hCG; Organon, Puteaux, France; LaMarca et al. 1985) or with 0.1–1 μM progesterone (Baulieu et al. 1978). E₂ (1 μM final concentration; Steraloids, Newport, RI, USA) was added simultaneously. Approximately 30 pg E₂ diluted in PBS with 1 mg/ml BSA and 10% ethanol were injected directly into stage VI PI oocytes. Oocytes injected with equivalent volume of steroid vehicle (~15 nl PBS containing 10% ethanol and BSA 1 mg/ml) were used as control. After incubation, germinal vesicle breakdown (GVBD), which reflects meiosis resumption, was assessed by direct observation under a stereomicroscope of the appearance of a white spot on the animal pole of the follicle-enclosed or denuded oocytes.

In situ hybridization

In situ hybridization was performed as described previously (Mourot et al. 2006, Vizziano et al. 2007). In brief, ovarian tissue was processed in a citadel 1000 tissue processor (Shandon, Pittsburgh, PA, USA). Dehydrated tissues were embedded in paraffin in plastic molds using a Hist Embedder (TBS88; Medite, Burgdorf, Germany). In situ hybridization was performed using the In situ Pro, Intavis AG robotic station on 10 μm sections. P450-arom sense and antisense probes were synthesized from Xenopus cDNA clone (BC079750.1) using Riboprobe Combination System (Promega). PCR products were generated using M13 reverse and forward primers (CCCACTGCAGCCCTTGAACAGCA/AGCGGATAACATTTTCACACAGGA) and were incubated (500 ng) for 2 h at 37 °C with sense (SP6) or antisense (T7) primers in transcription buffer as described previously (Gohin et al. 2011). Probe concentration and quality were assessed using nanodrop ND-1000 spectrophotometer (NanoDrop, Wilmington, DE, USA). Hybridization specificity was controlled by comparing signals obtained with the antisense and the sense probes on adjacent sections. Mounted sections were photographed with an ECLIPSE 90i microscope and NIS Advanced Research Software (Nikon Instruments, Amstelveen, The Netherlands).

P450-arom mRNA synthesis and injection

The cDNA corresponding to Xenopus laevis p450-arom open reading frame (ORF; GenBank accession number: NM_001085653) was subcloned into the pcDNA+ expression vector (Rupp et al. 1994, Turner & Weintraub 1994). Capped p450-arom RNA was prepared after NotI linearization using mMessage mMACHINE Kit (Ambion) and purified according to the manufacturer’s instructions. In vitro transcribed capped p450-arom RNA was injected into stage VI prophase I denuded oocytes (~15 nl of a 1 pg/μl solution). Microinjected oocytes were then incubated at room temperature (20 °C) for 12–24 h in modified OR2 buffer before any treatment or freezing.
RNA purification, RT, and real-time quantitative PCR

Total RNA was extracted from *Xenopus* follicles or denuded oocytes using Tri-Reagent (Molecular Research Center, Cincinnati, OH, USA) according to the manufacturer’s instructions. Total RNA was repurified using a Nucleospin RNA II kit (Macherey Nagel, Germany) and 2 μg RNA were reverse transcribed using 200 units Moloney murine leukemia virus reverse transcriptase (Promega) and 1 μg random hexamers (Promega) in a master mix containing 2 mM dNTPs, 50 mM Tris–HCl, 75 mM KCl, 3 mM MgCl2, 10 mM dithiothreitol, pH 8.3, and supplemented with 25 units of RNase inhibitor (RNasin, Promega) as described previously (Bobe et al. 2006). Control reactions were run without enzyme and used as negative controls in the real-time PCR study.

QPCR was carried out using a real-time PCR Step One Plus system (Applied Biosystems, Foster City, CA, USA). RT products were diluted to 1/25. Triplicates were run for each RT product. Real-time PCR was performed using a kit provided with a SYBR Green (Fast SYBR Green Master Mix, Applied Biosystems) curve protocol followed the same steps as described previously (Gohin et al. 2010). The primers used are presented in Table 1.

Aromatase activity assay

A tritiated water release assay was used to measure aromatase activity using androstenedione as a precursor. One hundred stage IV and 50 stage VI PI follicles, denuded oocytes, and corresponding follicular layers were homogenized in 1·5 ml phosphate buffer (20 mM Na2HPO4, 0·2 M NaCl, 0·15 M KCl, 0·25 M saccharose, 5 mM dithiothreitol, and 1 mM 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (Sigma–Aldrich), pH 7·55) using an ultra-turrax. Extracts were centrifuged at 12 800 g for 15 min at 4 °C and the assay was performed using the supernatants.

The tritiated water release assay for aromatase activity determination was adapted from previous studies (Gore-Langton & Dorrington 1981, Monod et al. 1993) using 450 μl *Xenopus* extracts in duplicates adjusted to 500 μl after adding the cofactor NADPH (1 mM, Sigma–Aldrich) and 1β 3H-androstenedione (s.a. = 0·87 TBq/mmol, PerkinElmer, Boston, MA, USA; 19 kBq to a final concentration of 50 nM). The reaction was performed at 16 °C under agitation for 20 h and terminated by adding 50 μl 3 M trichloroacetic acid. After adding 450 μl water, samples were centrifuged (3500 g, 15 min, 4 °C). Supernatants (700 μl) were transferred to 5 ml glass tubes containing a charcoal pellet (50 mg/tube). Tubes were shaken for 7 h at 4 °C and then centrifuged (3500 g, 15 min, 4 °C). Duplicates of 400 μl supernatants were mixed with 4 ml liquid scintillation fluid (Pico-Fluor 40, PerkinElmer) for radioactivity counting for 10 min.

Steroid extraction

One hundred stage IV and 50 stage VI PI denuded oocytes were homogenized in 1 ml phosphate buffer. A tracer quantity of tritiated E2 (2,4,6,7 3H-E2 Amersham, GE Healthcare Europe GmbH, Saclay, France; s.a. = 3·26 TBq/mmol; 4000 d.p.m. in 100 μl buffer) was added to estimate steroid recovery. Homogenates were placed in 15 ml glass tubes, supplemented with 5 ml of 100% ethanol, and vortexed. After centrifugation at 3500 g for 15 min at 4 °C, supernatants were collected and placed into 10 ml glass tubes. Ethanol was evaporated at 50 °C under air and the aqueous phases were extracted three times with 5 ml dichloromethane. After evaporation of the organic phase under air, dry residues were stored overnight at −20 °C. E2 was further purified by a solvent partition into aqueous NaOH (Chatterton et al. 2004). Dry residues were dissolved in 1 ml xylene and E2 was extracted twice with 1·5 ml NaOH 1 N. The alkaline solutions were neutralized with 0·8 ml HCl 4 M and E2 was re-extracted twice with 5 ml dichloromethane. The final organic phases were evaporated and extracts were dissolved in 500 μl

<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession number</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyp19</td>
<td>NM_001085653</td>
<td>CTTCCGGGAGACGATTTGTAA</td>
<td>CCGACCATGGCAACATCT</td>
</tr>
<tr>
<td>Star</td>
<td>AF220437</td>
<td>ACAGGGAGAACGCGAGAGA</td>
<td>CCGACCATGGCAACATCT</td>
</tr>
<tr>
<td>Esr1a</td>
<td>NM_001089617.1</td>
<td>TAGCTGGAAACGAGGACAGC</td>
<td>TCGGAGGTTCTGAACTCT</td>
</tr>
<tr>
<td>Esr1b</td>
<td>NM_001089615</td>
<td>TGGGATTAACCCCTAACTG</td>
<td>TCGGAGGTTCTGAACTCT</td>
</tr>
<tr>
<td>18S</td>
<td>X02995.1</td>
<td>CCGAGGTTCTGAAAGACATCA</td>
<td>TCGGAGGTTCTGAACTCT</td>
</tr>
</tbody>
</table>

Table 1 QPCR primer 5′-sequences-3′ and corresponding GenBank accession number

www.endocrinology-journals.org

Journal of Molecular Endocrinology (2011) 47, 241-250

Downloaded from Bioscientifica.com at 02/25/2019 02:12:13PM
via free access
phosphate RIA buffer (NaH$_2$PO$_4$ 10 mM, Na$_2$HPO$_4$ 10 mM, and NaCl 150 mM, pH 7.25). One hundred microliters were used for radioactivity counting in 4 ml Picofluor (PerkinElmer) for 10 min per sample to determine extraction yield and 100 µl duplicates were used for E$_2$ RIA.

E$_2$ RIA

E$_2$ was measured by RIA as described previously (Fostier et al. 1982) using an anti-E$_2$ rabbit antibody, 30 000 d.p.m./tube of 2,4,6,73H-E$_2$ (s.a.=3-26 TBq/mmols, PerkinElmer) as tracer and 5–3000 pg/tube unlabeled E$_2$ (Steraloids) as a reference.

Statistical analysis

Results are expressed as mean ± S.E.M. Statistical analyses were performed using Statistica 7.0 Software (Statsoft, Tulsa, OK, USA). Differences among groups were analyzed using Mann–Whitney U test or χ^2 test for non-parametric samples. Differences between groups were considered significant when $P<0.05$.

Results

Aromatase is expressed in late vitellogenic oocytes and transcript levels dramatically decrease during late oogenesis in follicle-enclosed and denuded oocytes

Aromatase transcript was detected in follicular cells of Xenopus vitellogenic follicles and appeared not homogeneously distributed (Fig. 1A and C). Under our experimental conditions, it was difficult to distinguish granulosa from theca cells. Aromatase transcript was also detected in the cytoplasm of previtellogenic stage I (100 µm diameter; Fig. 1E) to vitellogenic stage III and IV oocytes (600 µm diameter; Fig. 1A). Consistently with in situ hybridization results, aromatase was detected by RT-QPCR in Xenopus vitellogenic stage IV (st IV) oocytes (Fig. 2, left panel). During late vitellogenesis, the amount of aromatase transcript represented 25% of the signal in whole follicles. During oocyte maturation, aromatase expression dramatically decreased in both whole follicles and oocytes (Fig. 2, left panel; st VI MII).

In order to explore a possible contamination of oocyte extracts by follicle cell material, star expression was monitored under the same conditions in whole follicles and oocytes (Fig. 2, middle panel), as star has been described as expressed exclusively by the follicular cells in another non-mammalian vertebrate, the rainbow trout (Kusakabe et al. 2002, Gohin et al. 2011). Although star expression reached a very high level in Xenopus, no oocyte expression was detected significantly above background level (amplification from RT products without reverse transcriptase). As a control, 18S expression appeared stable among tissues (Fig. 2, right panel).

Aromatase is active in oocytes and aromatase activity in follicle-enclosed and denuded oocytes dramatically decreases during late oogenesis

To determine whether the corresponding protein was expressed in oocytes and because none of the custom-made or commercially available antibodies that we tested cross-reacted with Xenopus aromatase, an enzyme activity assay was performed. From vitellogenic stage to postvitellogenic stage VI PI, a 70-fold decrease in aromatase activity occurred in the whole follicles (Fig. 3A). High levels of aromatase activity were also detected in Xenopus isolated follicular layers (follicular cells only). A significant activity was also detected in Xenopus late vitellogenic oocytes. In agreement with RT-QPCR data, Xenopus aromatase activity in the oocyte represented nearly 25% of the activity in the whole

Figure 1 Localization of aromatase transcripts in Xenopus laevis ovaries. Xenopus p450-arom antisense (A, C, and E) and sense (B, D, and F) probes were hybridized on adjacent ovarian sections. Xenopus p450-arom transcripts were present in stage III oocytes (st III, >500 µm diameter) and in the corresponding follicular cells (st III foll) but not in the stage V oocytes (st V oo >1000 µm diameter). Gv, germinal vesicle; bv, blood vessel; me, melanosomes; fc, follicular cells.
follicle. Finally, a low but significant level of aromatase activity (1·14±0·24 vs 0·55±0·12 fmol/20 h in control) was measured in postvitellogenic, stage VI, follicles but no activity was detected in the corresponding denuded oocytes (0·98±0·2 fmol/20 h; Fig. 3A). In order to demonstrate the specificity of the aromatase assay used in this study, we further showed that the activity measured by this assay was significantly increased in extracts of stage VI – prophase I arrested – oocytes previously (12–24 h) injected with 15 ng in vitro synthesized and capped mRNA encoding $\text{X}l$ p450-arom ORF whereas no significant activity was detected in non-injected or water-injected oocytes (Fig. 3B).

E$_2$ inhibits follicle-enclosed oocyte gonadotropin-induced maturation but facilitates progesterone-induced maturation of denuded oocytes

In order to further understand E$_2$ function in the oocyte, we measured E$_2$ concentrations in *Xenopus* oocytes. E$_2$ concentration in denuded oocytes (100 stage IV versus 50 stage VI PI oocytes from one female in duplicates) slightly decreased during late oogenesis from 7 to 5 pg per oocyte. Thus, in stage IV (800 μm diameter and 0·3 μl volume) and stage VI (1250 μm diameter and 1 μl volume) oocytes, E$_2$ concentration may be estimated to be 100 and 20 nM respectively. E$_2$ added simultaneously in culture medium dramatically inhibited *Xenopus* follicle-enclosed oocyte maturation induced by 40 units/ml hCG; only 8% of follicle-enclosed oocytes resumed meiosis after incubation with hCG supplemented with 1 μM E$_2$ while 65% matured in absence of E$_2$ (Fig. 4A). To address the direct effect of E$_2$ on the oocyte, we then checked its action on denuded oocytes (Fig. 4B and C). Female maturational competence was evaluated by the maturing response to 1 μM progesterone after a 12 h treatment. Females in whom more than 50% of oocytes resumed meiosis were classified as highly responsive to progesterone stimulation, while females in whom <50% of oocytes resumed meiosis were classified as poorly responsive. First, in neither group did 1 μM E$_2$ inhibit resumption of meiosis of denuded oocytes contrarily to the results obtained with whole follicles. In contrast, it rather potentiated oocyte maturation induced by a sub-saturating dose of progesterone (0·1 μM; Fig. 4B and C).

At high progesterone concentration (1 μM = saturating

![Figure 2 QPCR analysis of aromatase and star mRNA expression in whole Xenopus follicles and oocytes during late oogenesis. The mRNA levels of p450-arom (left panel), star (middle panel), and 18S (right panel) were monitored in whole follicles and denuded oocytes sampled during vitellogenic stage IV (st IV) and matured stage VI (st VI MII). For each sample, three separate RT reactions were carried out using three separate RNA samples originating from three different animals. Analysis of mRNA levels was standardized to levels of 18S rRNA. Mean ± S.E.M. are shown (n=3). Different letters indicate significant differences (non-parametric Mann–Whitney U test at P<0·05).](http://www.endocrinology-journals.org/jme/article-pdf/47/3/241/3328455/241.pdf)

![Figure 3 Aromatase activity in Xenopus whole follicles and denuded oocytes during late oogenesis. (A) Aromatase activity was measured by tritiated water release assay from whole follicles (foll) and denuded oocytes (oo) sampled at stage IV (st IV) and stage VI prior to meiosis resumption (st VI PI), and follicular layers (f.l.) from stage IV follicles. Activity is expressed as femtomoles (E1) synthesized over 20 h from three females in duplicates. (B) Aromatase activity in non-injected stage VI oocytes (not inj.), after injection of water (H$_2$O), or after 12–24 h following the injection of 15 ng p450-arom mRNA (12 h p450-arom and 24 h p450-arom). Activity was measured in 50 prophase I stage VI oocytes from three females in duplicates. The controls (ctrl) correspond to phosphate buffer processed under the same conditions. Mean ± S.E.M. are shown (n=3). Different letters indicate significant differences (non-parametric Mann–Whitney U test at P<0·05).](http://www.endocrinology-journals.org/jme/article-pdf/47/3/241/3328455/241.pdf)
dose), E2 also exerted a slight but significant potentiating effect only in poorly responsive females (Fig. 4C). Finally, E2 alone did not stimulate oocyte maturation in any of the two groups (data not shown).

In order to confirm this slight but reproducible effect of E2 on oocyte maturation, 30 pg E2 (which represent around four times the physiological concentration in stage IV according to the results reported here and in previous studies (Fortune 1983)) were directly injected in 50 stage VI oocytes of three females. Oocytes were then stimulated with progesterone within 30 min following microinjection. No significant effect was detected on the final GVBD rates after 12 h incubation, but a potentiation was reproducibly observed during the time course of progesterone-induced oocyte maturation (Fig. 5) as sometimes evidenced in our E2 balneation experiments, especially with oocytes from low responsive females (data not shown).

ESR1a and b are expressed by the Xenopus oocyte

In order to address whether E2 may exert its effect through ligand activation of the major estrogen receptor (ERα; Esr1; two described isoforms in Xenopus: Esr1a and b), we analyzed their mRNA expression by RT-QPCR in follicle-enclosed and denuded oocytes (Fig. 6). Both receptors were expressed in oocytes and their mRNA level, which represented 50% of the signal measured in whole follicles, remained stable at least throughout late oogenesis.

Discussion

Our results showed that in addition to the follicular cells, aromatase, the enzyme responsible of E2 synthesis, is also expressed and active in Xenopus vitellogenic oocytes. Moreover, vitellogenic and postvitellogenic oocytes do express ERα mRNA, suggesting that estrogens may participate in oocyte late development.

Ovarian follicle E2 synthesis, a three cell-type model

In this study, aromatase expression and activity were detected in the follicular cells of Xenopus follicular cells as evidenced by in situ hybridization. Previous studies have already shown that aromatase is expressed by the follicular cells in the amphibian Rana rugosa during gonad development (Kato et al. 2004). However, our observations also demonstrate that follicular somatic cells are not the unique site of aromatase expression in Xenopus. Aromatase appears indeed expressed and active in vitellogenic oocytes. This observation leads to reconsider the two-cell cooperation model that has been proposed for amphibians (Ahn et al. 1999). Moreover, a significant level of aromatase activity was detected in Xenopus oocyte that corresponds to 25% of whole follicle aromatase activity. This steroidogenic activity is consistent with the mRNA expression that also corresponds to 25% of whole follicle expression. As a follicular control, we observed that star was exclusively expressed by the follicular cells.
Aromatase expression in Xenopus oocyte

Aromatase expression and activity decreased during late oogenesis concomitantly with a decrease in aromatase expression and activity in the whole follicle synthesized by one compartment in comparison to the other. Moreover, it is also possible that oocytes modulate E2 production by the follicular somatic cells and reciprocally, as previously reported (Sretarugsa & Wallace 1997). The regulation of aromatase expression and activity in the germinal compartment of the ovarian follicle during final oocyte maturation would be in favor of an active participation of E2 from oocyte origin in the intra-follicular dialog. Therefore, our findings and a previous report (Yang et al. 2003) clearly indicate that a third participant – the oocyte – has to be added to the two cell-type model of E2 synthesis in Xenopus. Nevertheless, determining the physiological role of E2 synthesized by the oocyte in comparison to the role of E2 of somatic origin is difficult to perform for technical reasons as local inhibition of oocyte aromatase within each compartment of the whole follicle cannot be performed by microinjection or use of aromatase inhibitors.

Modulation of Xenopus oocyte maturation by E2

Oocyte aromatase expression and activity decreased during late oogenesis concomitantly with a decrease in aromatase expression and activity in the whole follicle.

Figure 5 Effect of estradiol (E2) microinjection on progesterone-induced resumption of meiosis of Xenopus denuded oocytes. Fifty stage VI prophase I oocytes were microinjected with 30 pg E2 or with vehicle buffer (veh.) and then incubated at room temperature in modified OR2 buffer completed with 1 μM progesterone (Pg + E2 or Pg + veh. respectively), whereas 50 oocytes were only incubated with or without 1 μM progesterone (Pg (n.i.) or cont. respectively). Germinal vesicle breakdown (GVBD) was assessed by direct observation under a stereomicroscope of the appearance of a white spot on the oocyte animal pole. Results are representative of three independent experiments.

Figure 6 QPCR analysis of estradiol (E2) receptor 1 (esr1a and b) mRNA expression in whole follicles and oocytes during late oogenesis. The mRNA levels of E2 receptor 1 (esr1a and b) were monitored in whole follicles and denuded oocytes sampled during vitellogenic stage IV (st IV) and matured stage VI (st VI MII). For each sample, three separate RT reactions were carried out using three separate RNA samples originating from three different animals. Analysis of mRNA levels was standardized to levels of 18S rRNA. The mRNA abundance was arbitrarily set to 100 for st IV follicle. Mean ± S.E.M. are shown (n = 3). No significant difference could be detected (using non-parametric Mann–Whitney U test).
(Mulner et al. 1978, Fortune 1983, Gohin et al. 2010). Moreover, *Xenopus* intra-oocyte E$_2$ concentrations are in the range of E$_2$ content previously measured in the whole follicles (Fortune 1983) and in plasma varying from 1 to 28 ng/ml corresponding to a maximum of 100 nM (Pickford & Morris 1999, Hecker et al. 2004, Urbatzka et al. 2007). Moreover, E$_2$ appeared to be maternally inherited as E$_2$ is still detected in *Xenopus* unfertilized eggs (Kloas 2002). The physiological function of oocyte E$_2$ remains unclear, particularly during oocyte maturation. As reported in *Rana pipiens* (Schuetz 1972, Spiegel et al. 1978, Lin & Schuetz 1983, 1985), E$_2$ appeared to inhibit *Xenopus* follicle-enclosed oocyte maturation likely through an inhibition of gonadotropin/cAMP-induced progesterin synthesis by follicular layers (Lin et al. 1988). However, a direct inhibitory effect of E$_2$ on the oocyte could not be ruled out, as demonstrated in previous studies in *Xenopus* (Baulieu et al. 1978) and in *Rana pipiens* (Lin & Schuetz 1983). Moreover, several studies reported a slight significant effect of high E$_2$ dose pretreatment on *Xenopus* denuded oocyte maturation (Hanocq-Quertier & Baltus 1981, Pickford & Morris 1999). In our study, E$_2$, added simultaneously and at nearly a tenfold oocyte physiological concentration, did not inhibit steroid-triggered maturation in denuded oocytes, suggesting that E$_2$ inhibitory effects are occurring in follicular cells. We even surprisingly observed that E$_2$ exerted a slight enhancing action on progesterone-induced meiotic resumption, especially when used in combination with a sub-saturating dose of the MIS. The potentiating effect of E$_2$ evidenced previously and in this study may be due to E$_2$ antioxidant effect.

The effect previously observed after E$_2$ pretreatment may also suggest that its potentiating effect results from a classical genomic mechanism of gene expression activation by ligand-dependent activation of the classical – intracellular – Esr1 and/or Esr2. This is strengthened by the fact that esr1 (a and b) mRNAs are also detected in *Xenopus* oocytes and their content remains stable throughout late vitellogenesis and maturation. Nevertheless, E$_2$ may also act through a non-genomic mechanism after activation by ERs of signaling pathways (via c-Src or MAPK pathways) that would subsequently interact with the maturation-promoting factor induction. Indeed, it has been shown in other cell types that ERz (Esr1) directly interacts with and activates Src (Fox et al. 2009), the latter being able to accelerate progesterone-induced oocyte maturation (Tokmakov et al. 2005). Moreover, MAPK activation has been shown to participate in maturation promoting factor (MPF) activation and thus to stimulate *Xenopus* oocyte maturation (Palmer & Nebreda 2000). Finally, a modulator of non-genomic action of the ER, MNAR, is also expressed in *Xenopus* oocytes (Haas et al. 2005). All these results suggest that E$_2$ genomic and non-genomic effects likely play important and unsuspected roles at the oocyte level during late oogenesis that will need to be further characterized.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was funded by ANR-08-GENM-033 (OSCILE) grant to J B and F C, M G was supported by a doctoral fellowship from CNRS & Region Bretagne.

Acknowledgements

The authors thank CNRS personnel (Rennes) for animal care and Stephane Dreano for his technical support in cDNA sequencing.

References

Mourat B, Nguyen T, Fostier A & Bode J 2006 Two unrelated putative membrane-bound progestin receptors, progesterone membrane receptor component 1 (PGMRC1) and membrane progesterin receptor (mPR) beta, are expressed in the rainbow trout oocyte and exhibit similar ovarian expression patterns. *Reproductive Biology and Endocrinology* 4:6. (doi:10.1186/1477-7827-4-6)

Spiegel J, Jones E & Snyder BW 1978 Estradiol-17 beta interference with meiotic maturation in *Rana pipiens* ovarian follicles:
evidence for inhibition of 3 beta-hydroxysteroid dehydrogenase.

Sretarugsa P & Wallace RA 1997 The developing *Xenopus* oocyte specifies the type of gonadotropin-stimulated steroidogenesis performed by its associated follicle cells.

Thibier-Fouchet C, Mulner O & Ozon R 1976 Progesterone biosynthesis and metabolism by ovarian follicles and isolated oocytes *Xenopus laevis*.

Turner DL & Weintraub H 1994 Expression of achaete-scute homolog 3 in *Xenopus* embryos converts ectodermal cells to a neural fate.

Yang WH, Lutz LB & Hammes SR 2003 *Xenopus laevis* ovarian CYP17 is a highly potent enzyme expressed exclusively in oocytes. Evidence that oocytes play a critical role in *Xenopus* ovarian androgen production.
Journal of Biological Chemistry **278** 9552–9559. (doi:10.1074/jbc.M212092200)

Received in final form 8 July 2011
Accepted 18 July 2011
Made available online as an Accepted Preprint 18 July 2011