Insulin-like growth factor-binding protein-4 inhibits growth of the thymus in transgenic mice

R Zhou¹, ², H Flaswinkel¹, M R Schneider¹, H Lahm³, A Hoeflich¹, R Wanke⁴ and E Wolf¹

¹Institute of Molecular Animal Breeding and Biotechnology, Gene Center of the University of Munich, 81377 Munich, Germany
²College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, China
³Immunology-Molecular Biology Laboratory, Thoraxklinik Heidelberg gGmbH, 69126 Heidelberg, Germany
⁴Institute of Veterinary Pathology, University of Munich, 80539 Munich, Germany

(Requests for offprints should be addressed to E Wolf; Email: ewolf@lmb.uni-muenchen.de)

Abstract

Numerous in vitro studies have demonstrated that IGF-binding protein (IGFBP)-4 is a consistent inhibitor of IGF actions. In order to investigate the functions of IGFBP-4 in vivo, transgenic mice were generated by microinjection of a transgene, in which the murine Igfbp4 cDNA is driven by the H-2Kb promoter, and followed by a splicing cassette and polyadenylation signal of the human β-globin gene. Transgene mRNA was expressed ubiquitously, and elevated IGFBP-4 protein was detected in the spleen, thymus, kidney and lung of transgenic mice. The activities of serum IGFBPs were not changed in transgenic mice. Immunohistochemical studies revealed transgene expression predominantly in the thymic medulla and red pulp of the spleen. Body weight and the weights of the spleen, kidney and lung of transgenic mice were not different from controls. In contrast, the thymus of transgenic mice showed a significantly reduced weight and cortex volume. In transgenic thymus and spleen, cell proliferation was inhibited and apoptosis was stimulated. Transgenic mice showed normal T- and B-cell development and normal basal plasma immunoglobulin levels. In conclusion, overexpression of IGFBP-4 inhibits growth of the thymus. IGFBP-4 excess inhibits cell proliferation and stimulates apoptosis in lymphoid tissues, but does not affect lymphocyte development. These findings suggest that IGFBP-4 is a potential growth inhibitor of lymphoid tissues.

Journal of Molecular Endocrinology (2004) 32, 349–364

Introduction

Insulin-like growth factors-I and -II (IGFs-I and -II) are two important growth-promoting factors which regulate cellular survival, proliferation and differentiation (Stewart & Rotwein 1996). Most of these actions are mediated by the type-I IGF receptor (IGF-IR) and are regulated by the IGF-binding proteins (IGFBPs), which represent a family of six secreted proteins with a common domain organization (Hwa et al. 1999). Despite their structural similarity, each IGFBP has unique properties and exhibits specific functions. IGFBPs inhibit and/or potentiate IGF actions, and some of them have effects independent of IGF binding (Firth & Baxter 2002, Mohan & Baylink 2002).

Among the six IGFBPs, IGFBP-4 is the smallest one and exists in both non-glycosylated (24 kDa) and N-glycosylated (28 kDa) forms in all biological fluids. IGFBP-4 is unique among the six IGFBPs in having two extra cysteine residues in the variable central domain, which are linked by a disulfide linkage. IGFBP-4 is expressed by a wide range of cell types and tissues, and its expression is regulated by different mechanisms in a cell-type-specific manner (for review see Zhou et al. 2003).

IGFBP-4 was first described on the basis of its ability to potently inhibit bone cell growth (Mohan et al. 1989) and follicle-stimulating hormone (FSH)-stimulated steroid production of ovarian granulosa cells (Ui et al. 1989). It binds IGF-I and IGF-II with similar affinities and inhibits their
actions under most physiological and pathological conditions. IGFBP-4 inhibits IGF-induced cell proliferation and differentiation in many cell types (for review see Zhou et al. 2003). Local administration of recombinant IGFBP-4 inhibited IGF-I-induced increases of bone formation in mice (Miyakoshi et al. 1999). In contrast, systemic administration of IGFBP-4 stimulated bone formation, probably due to increasing IGF bioavailability via an IGFBP-4 protease-dependent mechanism (Miyakoshi et al. 2001). Transgenic mice overexpressing IGFBP-4 selectively in smooth muscle cells exhibited smooth muscle hypoplasia (Wang et al. 1998), which was in direct contrast to the smooth muscle hypertrophy induced by IGF-I overexpression (Wang et al. 1997). Moreover, a protease-resistant IGFBP-4 had more potency (Zhang et al. 2002), and IGF-I/IGFBP-4 double transgenic mice showed a reduction in wet weight of selected smooth muscle tissues (Wang et al. 1998), suggesting that these inhibitory effects of IGFBP-4 are IGF-I dependent.

In addition, IGF-independent actions of IGFBP-4 have also been suggested (for review see Zhou et al. 2003). However, unlike IGFBPs-3 and -5, a specific receptor for IGFBP-4 has not been identified yet.

In order to investigate the function of IGFBP-4 in vivo, we generated transgenic mice overexpressing murine IGFBP-4 under the control of the murine H-2Kb promoter. The latter was isolated from a class I gene of the major histocompatibility complex and shown to facilitate ubiquitous expression of transgenes with high levels in lymphoid organs (Morello et al. 1986). As the IGFBP-4 transgene was highly expressed in the spleen and thymus, we focused on the characterization of effects on growth and development of lymphoid organs.

Materials and methods

Construction and transfection of pH-2Kb-mIGFBP-4

The mouse Igfbp4 complementary DNA (kindly donated by Dr Drop, University of Rotterdam, The Netherlands) was released from pGEM4Z-mIGFBP-4, blunt ended and cloned into the blunted SalI restriction site of the mammalian expression vector pUC-H2 XXS (Plitz et al. 1999).
were analyzed by Western ligand and Western immunoblot.

Generation of transgenic mice

All mice were purchased from Elevage Janvier (Le Genest-Saint-Ise, France) and Charles River Laboratories (Sulzfeld, Germany), and were maintained and bred under specific pathogen-free conditions according to the guidelines of the Federation of European Laboratory Animal Science Associations (FELASA). Transgenic mice were generated by microinjection of the 5 kb XhoI fragment released from the expression vector pH-2Kb-mIGFBP-4 into pronuclei of F2 zygotes from B6D2F1 (C57BL/6 × DBA/2) parents (Charles River Laboratories). The microinjected zygotes were implanted into the oviducts of pseudopregnant Naval Medical Research Institute (NMRI) mice (Charles River Laboratories) and carried to term. Founder transgenic mice were backcrossed with wild-type C57BL/6 mice (Elevage Janvier) for establishment and propagation of lines. Transgenic mice were identified by PCR (Taq DNA polymerase; Qiagen, Hilden, Germany) using DNA from tail clips. The tail tips of 3-week-old mice were lysed overnight in Kawasaki buffer (20 mM Tris–HCl (pH 7·5), 1·5 mM MgCl2, 25 mM KCl, 0·5% (v/v) Tween 20) containing 1·2 mg/ml proteinase K at 56°C. The samples were then heated at 95°C for 15 min to inactivate the proteinase K, and centrifuged at 15 300 g and 4°C for 5 min; 2 µl of the supernatant were used for PCR analysis. The integrity of the genomic DNA was confirmed by amplifying a sequence of the housekeeping gene /afii9826-actin as described previously (Schneider et al. 2001). The integration of the construct was determined by PCR using sense primer mBP4#14 within the Igfbp4 cDNA (5'-TAA GCC TGA TTC TCG TG-3') and antisense primer /afii9826-globin#1 within the downstream exon of the /afii9826-globin splice cassette (5'-GGC AGC CTG TGG TGG-3'). Both PCR amplifications were performed as follows: 94°C for 4 min, followed by 35 cycles of 94°C for 1 min, 60°C for 1 min and 72°C for 2 min. After a final 10 min extension at 72°C the amplified products were separated in 1·2% agarose gels and visualized by ethidium bromide staining under u.v. light. The transgene integration pattern was analyzed by Southern blot as described previously (Hoeflich et al. 1999) using an [α–32P]dCTP-labeled mouse IGFBP-4 cDNA probe. Genomic DNA was isolated from tail biopsies using the Wizard genomic DNA purification kit (Promega) and hydrolysed with EcoRI. Transgene expression was determined by reverse transcription (RT)-PCR, Western ligand and Western immunoblot analyses.

RT-PCR

The human β-globin splicing cassette in the transgene construct allows the differentiation of transgene-specific transcripts from the endogenous IGFBP-4 mRNA by RT-PCR. Total RNA was isolated from cell cultures and different mouse tissues using the TriPure isolation reagent (Roche) according to the manufacturer’s instructions. RT was performed as described previously (Schneider et al. 2001). PCR amplification was carried out using the transgene-specific primers mBP4#14 and β-globin#1 and the β-actin primers as described above. Control PCR reactions omitting RT and cDNA were also carried out.

Western ligand blot

Tissue samples (20 mg) were homogenized in 0·5 ml protein extraction buffer (20 mM Tris–HCl (pH 7·5) and 2% (v/v) Triton X-100 in Laemmli buffer) using a cell homogenizer (ART, Muehlheim, Germany); 50 µg of protein from the tissue extracts, 1 µl serum or 16 µl SFCM were diluted in Laemmli buffer, boiled for 5 min, separated on 5% stacking/15% separating SDS-polyacrylamide gels, and electroblotted to polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA, USA). Western ligand blotting was carried out as described previously using an 125I-labeled recombinant human IGF-II tracer (Schneider et al. 2001).

Western blot

Blots were prepared as above, washed once in TBS-T (20 mM Tris–HCl (pH 7·6), 137 mM NaCl, 0·1% Tween-20) at room temperature for 10 min and blocked at 4°C overnight with blocking solution (TBS-T containing 3% (w/v) fat-free
milk powder). Thereafter the blots were incubated at room temperature for 60 min with the rabbit anti-IGFBP-4 polyclonal antiserum (Upstate Biotechnology, Lake Placid, NY, USA) diluted 1:1000 in blocking solution, and then washed three times in TBS-T. Secondary antibody (peroxidase-conjugated goat anti-rabbit immunoglobulin G (IgG); Jackson ImmunoResearch Laboratories, West Grove, PA, USA) was diluted 1:5000 in blocking solution, and incubated with the blots at room temperature for 1 h. Finally, the blots were washed three to five times in TBS-T. Peroxidase (POD) activity was detected with the ECL Western blotting detection reagent (Amersham), and visualized with Kodak Digital Image Station (NEN Life Science Products, Inc., Belgium).

Immunohistochemistry

The spleen and thymus were fixed in 4% PBS-buffered paraformaldehyde (pH 7.4) for 18–24 h, dehydrated in an ascending ethanol series and embedded in paraffin. Sections (5 μm) were deparaffinized in xylene and hydrated in a descending ethanol series to distilled water. Antigen retrieval was performed by microwave irradiation in 10 mM citrate buffer (pH 6.0), for 2 × 8 min at 750 W, followed by cooling to room temperature and washing twice in distilled water. Endogenous POD activity was blocked in 1% H₂O₂ in PBS for 15 min, followed by washing in PBS for 2 × 5 min. Blocking solution (10% normal rabbit serum in PBS) was applied for 60 min at room temperature, followed by incubation with the primary antibody, goat anti-IGFBP-4 polyclonal antibody (C-20; Santa Cruz Biotechnology Inc., Heidelberg, Germany), overnight at 4°C in a dark humid chamber (the primary antibody was diluted in the blocking solution: for spleen sections, 1:100; for thymus sections, 1:50). Negative controls were incubated with blocking solution without primary antibody. Thereafter, the sections were washed in PBS for 3 × 5 min. The second antibody, POD-conjugated rabbit anti-goat immunoglobulins (DakoCytomation GmbH, Hamburg, Germany), was diluted 1:100 and applied to each section for 60 min at room temperature. Sections were washed in PBS for 3 × 5 min and developed with 0.05% 3,3′-diaminobenzidine (DAB) and 0.03% H₂O₂ in PBS for 5 min, followed by counterstaining with hematoxylin.

Determination of body and organ weights

The body weight of mice was recorded once a week from 1 to 12 weeks of age. Mice from selected groups (at 4, 8 and 12 weeks), were anesthetized with ether, weighed and bled from the retro-orbital sinus. After measurement of the distance between the nose and the base of the tail (nose–rump length, NRL), the mice were killed by cervical dislocation. Organs and carcass were dissected, blotted dry and weighed. Complete organs or parts of them were frozen on dry ice and later stored at −80°C for RNA and protein isolation, or fixed in 4% paraformaldehyde for histological analysis.

Histomorphometry

The thymus and spleen were released from the surrounding tissues and weighed to the nearest 0.1 mg. Their volumes were determined by the fluid displacement method according to Scherle (1970). The organs were fixed in 4% paraformaldehyde and embedded in paraffin. Cavalieri’s principle (Gundersen & Jensen 1987) was applied to estimate the volumes of the paraffin-embedded thymus and spleen. First, the embedded organ was trimmed free of paraffin, and its length along the longitudinal axis was recorded. After positioning the first cut randomly within an interval of 1 mm, the organs were exhaustively sectioned perpendicular to their longitudinal axes into parallel slices of approximately 1 mm. These slices were placed with the right-hand cut-surface upward in tissue capsules and re-embedded in paraffin. Sections of 5 μm thickness representing systematic samples of the whole organs were prepared and stained with hematoxylin and eosin (HE). Light-microscopic planimetric evaluation was performed on a semiautomated image analysis system (Videoplan; Zeiss-Kontron, Eching, Germany) coupled to a microscope via a color video camera (Panasonic, Japan). A 2.5 × objective was used, providing a 90 × final linear magnification. An object micrometer (Zeiss) was used for calibration. The cross-sectional areas of organ structures of interest were determined on images displayed on a color monitor. These structures included the thymus and its cortex and medulla; and the spleen and its red pulp and white pulp, including the marginal zone. A correction factor for shrinkage due to histological processing was calculated for each organ as the
volume of the unfixed organ divided by the volume of the embedded organ. Assuming the same extent of shrinkage for the whole organ and its different compartments, the volumes of the different parts of the whole organ were calculated taking the individual shrinkage into account.

Flow cytometry
Blood (400–600 µl) was collected by bleeding from the retro-orbital sinus in a 1 ml lithium–heparin tube (Kabe Labortechnik GmbH, Nuembrecht-Elsenroth, Germany), centrifuged at 4500 g for 5 min, and the plasma was recovered for ELISA analysis. The nucleated cells were prepared as described previously (Flaswinkel et al. 2000). Thymus, spleen and subiliac lymph nodes were cut into small pieces in FACS buffer (PBS containing 2% FCS and 0.01% NaN₃) and were pushed through a 100 µm nylon cell strainer (Becton Dickinson Labware, Le Pont de Claix, France) to obtain single-cell suspensions. Subsequently, thymocytes and cells from the lymph node were washed twice in FACS buffer. Erythrocytes in the single-cell suspensions from spleen were removed by incubating in 10 ml lysis buffer (140 mM NH₄Cl, 17 mM Tris–HCl (pH 7.2)) for 15 min, followed by two washing steps in FACS buffer. Suspensions of bone marrow cells were flushed from the tibia with FACS buffer. Immunofluorescence staining and subsequent measurement as well as data analysis were performed as described previously (Flaswinkel et al. 2000).

In vitro proliferation assay
Splenocytes were cultured in flat-bottomed, 96-well polystyrene microtiter plates (Nunc, Kamstrup, Denmark) at a density of 2 × 10⁵ cells/ml in 200 µl RPMI 1640 medium (Gibco) supplemented with 50 µM 2-mercaptoethanol (Sigma), 4 mM glutamine, 1 mM pyruvate, 10% heat-inactivated FCS, 100 U/ml penicillin and 100 µg/ml streptomycin (Gibco). Splenocytes were stimulated either with 2 µg/ml concanavalin A (Con A; Sigma) or 10 µg/ml lipopolysaccharide (LPS; Sigma). After 48 h of culture at 37 °C in an atmosphere of 5% CO₂ and 100% relative humidity, the cells were pulsed with 1 µCi [³H]thymidine (Amersham) per well for an additional 18 h of culture. The cells were harvested using a Micro 96 harvester (Skatron Instruments, Tranby, Norway). Incorporation of [³H]thymidine was quantified in a Betaplate liquid scintillation counter (Wallac, Gaithersburg, MD, USA).

In situ proliferation assay
Two transgenic and two wild-type mice were injected intraperitoneally with 5-bromodeoxyuridine (BrdU; 30 µg/g body weight). The animals were killed 2 h later. Spleen and thymus were fixed in 70% ethanol and embedded in paraffin. Sections (5 µm) were prepared by standard procedures. Endogenous POD activity was blocked as described above, followed by washing in PBS. The sections were incubated in the following solutions separately: 30 min in 2 M HCl, 1 min in PBS, 2 × 10 min in 70% ethanol/0.1 M Tris–HCl (pH 7.5), 2 × 5 min in 70% ethanol, shortly in distilled water and 2 × 10 min in PBS. POD-conjugated anti-BrdU antibody (1:10; Roche) was added to the sections and incubated overnight at 4 °C in a dark humid chamber. Sections were washed in PBS, developed with DAB, counterstained with hematoxylin, and scored under a light microscope (Zeiss Axiovert 200) coupled to a color video camera (Zeiss Axiocam). Photomicrographs were taken and edited using Zeiss Axioversion Image software. The proliferation index (PI) was calculated from the percentage of BrdU-positive cells counted in the red pulp and white pulp of spleen, and in the cortex and medulla of thymus. Five random fields (50 µm × 50 µm, about 100 cells) in the red pulp and white pulp, and cortex and medulla were counted.

In situ apoptosis assay
The spleen and thymus from two transgenic and two wild-type mice were fixed in 4% paraformaldehyde, routinely processed and embedded in paraffin. Sections of 5 µm thickness were prepared, deparaffinized by standard procedures, treated with 750 W microwave irradiation for 1 min in 0.1 M citrate buffer (pH 6.0), cooled to room temperature and rinsed in PBS. Endogenous POD activity was blocked as described above, followed by washing in PBS. The terminal deoxynucleotide transferase

www.endocrinology.org
(TdT)-mediated dUTP nick end labeling (TUNEL) was carried out using the In Situ Cell Death detection kit (Roche). Each experiment was performed with a negative control (labeling solution without TdT). Fluorescein-labeled dNTPs were then detected by incubating sections with converter-POD (POD-conjugated anti-fluorescein antibody; Roche) at 37 °C for 30 min in a dark humid chamber. Sections were washed in PBS, developed with DAB and counterstained with hematoxylin. The apoptosis index (AI) was calculated from the percentage of TUNEL-positive cells counted in the red pulp and white pulp of spleen, and in the cortex and medulla of thymus as described above.

Basal immunoglobulin ELISA
Basal immunoglobulin levels in plasma were determined by using sandwich ELISAs specific for IgM, IgG3 and IgA as described previously (Flaswinkel et al. 2000).

Autoreactive antibody assay
Plasma anti-DNA autoreactive antibody levels were determined using the ELISA-based assay as described previously (Flaswinkel et al. 2000).

Statistical analysis
The data were analyzed for significance of differences using Student’s t-test. A difference was considered to be statistically significant at $P<0.05$.

Results

Generation of IGFBP-4 transgenic mice and examination of transgene expression

When conditioned media of NIH-3T3 cells transiently transfected with pH-2Kb-mIGFBP-4 and mock vector were analyzed by 125I-labeled IGF-II ligand blot, the level of a 24 kDa protein was significantly increased in the media from pH-2Kb-mIGFBP-4 transfected cells, compared with the media from the parental cells and mock transfected cells (data not shown). This protein was identified as being IGFBP-4 by Western blot using IGFBP-4 antibodies.
Two founder mice were obtained from the microinjection experiments and were mated with wild-type C57BL/6 mice, generating two transgenic lines. There were more transgene copies integrated in the genome of line 2 than line 1, as estimated by Southern blot analysis (Fig. 1). The endogenous Igfbp4 signals were detected at 8 kb and 2.7 kb in all wild-type and transgenic animals. The 5 kb microinjection fragment was recovered in both transgenic lines, and the line-specific signal was found at 10 kb in line 2 and >10 kb in line 1, indicating different integration sites in the two transgenic lines.

RT-PCR revealed ubiquitous expression of the transgene in all organs/tissues tested, including adrenal gland, bladder, brain, heart, kidney, liver, lung, ovary/testis, salivary gland, skeletal muscle, skin, spleen, stomach, small and large intestine, and thymus (Fig. 2). However, elevated IGF-binding activity was only detected in the spleen, thymus,

Figure 4 IGFBP-4 immunostaining of the spleen (upper panels) and thymus (lower panels) of wild-type (left) and transgenic mice (right). Strong signals were detected in the red pulp of the spleen (RP) and medulla of the thymus (M) of transgenic mice. WP, white pulp; C, cortex. Scale bar, 20 µm.
lung and kidney as shown by IGF-II ligand blot (Fig. 3A). The increased IGFBP at 24 kDa in the spleen of transgenic mice was confirmed to be IGFBP-4 by Western blot using IGFBP-4-specific antibodies (Fig. 3B). IGFBP-4 expression was consistently higher in line 2 than in line 1. The activities of serum IGFBPs were not changed in transgenic mice as shown by Western ligand blot (Fig. 3A).

In order to localize IGFBP-4 expression in the spleen and thymus, immunohistochemical staining was performed. Strong IGFBP-4 immunoreactivity was detected selectively in the splenic red pulp and thymic medulla of transgenic mice. The predominant IGFBP-4 positive cells were macrophages in the red pulp of the spleen and epithelial cells in the thymus medulla (Fig. 4).

Reduced thymus size in IGFBP-4 transgenic mice

Transgenic mice and non-transgenic littersmates from both lines were weighed once a week from 1 to 12 weeks of age to detect the possible effect of transgene expression on body weight gain. No significant difference was observed between transgenic and control animals from both lines (data not shown).

NRL, body and organ weights were recorded in 4-, 8- and 12-week-old animals. There were also no significant differences in NRL, body and organ weights between both groups, with the exception of thymus weight, which was significantly reduced in transgenic mice when compared with controls. This reduction persisted when thymus weight was
related to body weight (Fig. 5). Morphometric analysis revealed that the volumes of thymus and its cortex were significantly reduced in transgenic animals compared with control littermates, whereas the volume of thymic medulla was not different between the two groups (Fig. 6). In contrast, there were no significant differences in weight (Fig. 5), total and compartmental volumes of spleen between the two groups (Fig. 6).

Decreased cell proliferation and increased apoptosis in the spleen and thymus of transgenic mice

To analyze the proliferative capacity of T- and B-cells of the transgenic mice, splenocytes were stimulated \textit{in vitro} with mitogens Con A and LPS respectively. \(^{3}\text{H}\) thymidine incorporation experiments revealed that the proliferative activity of the transgenic splenocytes was significantly reduced after Con A \((P<0.05)\) and LPS \((P<0.01)\) stimulation (Fig. 7).

To visualize the proliferative status in the spleen and thymus, mice were injected 2 h before death with BrdU solution. As shown in Fig. 8, BrdU localized to the nuclei of proliferating cells, which were located predominantly in the cortex of thymus and in the red pulp of spleen (Fig. 8). The PI of the red pulp in transgenic mice was significantly decreased to 4.7 ± 3.0% compared with 8.6 ± 1.2% in control animals \((P<0.05)\), and that of thymic cortex was decreased to 3.9 ± 2.8% compared with 12.9 ± 2.7% in the controls \((P<0.001)\), while the PIs of splenic white pulp and thymic medulla were not different between transgenic and control mice.

We then performed TUNEL analysis of tissue sections of spleen and thymus to detect cells carrying fragmented DNA characteristic for apoptotic cells. TUNEL-positive cells located predominantly in the splenic red pulp and thymic cortex (Fig. 9). The AI of the red pulp in transgenic mice was significantly increased to 6.4 ± 3.2% compared with 2.2 ± 1.1% in control animals \((P<0.05)\), and that of thymic cortex was increased to 20.2 ± 6.4% compared with 12.9 ± 2.7% in the controls \((P<0.01)\), while the AIs of splenic white pulp and thymic medulla were not significantly different between the two groups.

Normal lymphocyte development

To investigate the potential effect of transgene expression in the thymus and spleen on the lymphocyte development, the lymphocytes from the thymus, bone marrow, spleen, lymph node and peripheral blood of transgenic and control mice were analyzed by flow cytometry, using antibodies against different markers expressed on T- and B-cells and other populations of lymphocytes. FACS analysis did not reveal any significant differences in percentages of different cell populations from the primary and secondary immune organs (Fig. 10) as well as in peripheral blood (data not shown).
Normal plasma immunoglobulin and autoreactive antibody levels

To detect possible effects of transgene expression on the production of the basal immunoglobulins and autoreactive antibodies, the plasma levels of IgM, IgG3, IgA and anti-DNA autoreactive antibodies were determined. Their levels in transgenic mice were not different from those of wild-type littermates (Fig. 11).

Discussion

The cross-talk between the endocrine and immune systems has been suggested by numerous studies (for reviews see: Blalock 1994, Madden & Felten 1995, Besedovsky & del Rey 1996). Cytokines, the soluble factors secreted by the immune cells, exert biological actions on the endocrine system (Silva et al. 1998), conversely, a variety of hormones and peptide growth factors have receptors in the tissues of the immune system and modulate immune functions (Dorshkind & Horseman 2000). IGF-I and IGF-II are not only involved in endocrine modulation of the development and function of the immune system, but also act as cytokines to regulate local growth and differentiation (Buul-Offers & Kooijman 1998, Jeay et al. 2002). As important regulators, IGFBPs may also be involved in these processes. To investigate IGFBP-4 actions, we generated transgenic mice overexpressing IGFBP-4. As the transgene was highly expressed in the spleen and thymus, we had the opportunity to characterize the effects of IGFBP-4 excess on growth and development of these organs.

Transgene expression

Transgenic mRNA was expressed ubiquitously in all tissues of transgenic mice (Fig. 2), and elevated protein levels were detected in the spleen, thymus, lung and kidney (Fig. 3). Immunohistochemical studies revealed that strong IGFBP-4 immunoreactivity was located selectively in the red pulp of the spleen and the medulla of the thymus. The majority of IGFBP-4-positive cells were macrophages in the spleen red pulp and epithelial cells in the thymus medulla (Fig. 4). This result is in agreement with the location of IGF-II expression in the H-2Kb-hIGF-II transgenic mice (Van der Ven et al. 1997). The expression pattern of the transgene was identical in the two different transgenic lines, indicating that expression of the transgene occurs independently of the integration sites. Elevated IGFBP-4 protein levels were detected in the spleen, thymus, lung and kidney, corresponding to high expression of the H-2Kb gene in these organs (Morello et al. 1986). The murine H-2Kb promoter has been used by several investigators for generations of transgenic mice expressing human growth hormone (hGH) (Morello et al. 1986), c-myc (Morello et al. 1989), c-fos (Ruther et al. 1988), hIGF-II (Buul-Offers et al. 1995) and mutant forms of the tumor necrosis factor receptor p55 (TNFRp55) (Plitz et al. 1999). In these mice, a tissue specificity similar to the endogenous H-2Kb mRNA expression was also observed.

Effects on body and organ growth

To investigate potential effects of transgene expression on body and organ growth, a large...
Figure 8 BrdU staining of the spleen (upper panels) and thymus (lower panels). Cell proliferation is documented by the presence of BrdU-positive cells (arrows), which are located predominantly in the red pulp (RP) and cortex (C). Note the decrease of proliferation rate in transgenic mice (right) compared with control mice (left). Scale bar, 20 µm.
Figure 9 TUNEL staining of the spleen (upper panels) and thymus (lower panels). Apoptotic cells (arrows) are located in the red pulp (RP) and cortex (C). Note the increase of apoptosis rate in transgenic mice (right) compared with wild-type mice (left). Scale bar, 20 µm.
A panel of allometric measurements was carried out as described in the Materials and methods section. The marked decrease in weight and volume of the thymus in the postnatal life is the outstanding feature of the H-2Kb-IGFBP-4 transgenic mice (Fig. 5). Although the transgene was also expressed in the spleen, kidney and lung, the weights of these organs were not changed (data for kidney and lung were not shown), suggesting that IGFBP-4 overexpression does not affect postnatal growth of these organs. However, ultrastructural studies need to be done to clarify this point further.

In order to define the histological alterations in the thymus and spleen, histomorphometric analyses were performed. The transgenic mice showed a significant decrease in thymic cortex volume compared with the controls, whereas the volume of the medulla was not altered (Fig. 6). IGFBP-4 was selectively expressed in the medulla of the thymus, but the histological effect was confined to the cortex. This finding is in agreement with the IGF-II effect in H-2Kb-hIGF-II transgenic mice (Van der Ven et al. 1997), and may be due to a paracrine effect of IGFBP-4 and a relatively higher sensitivity of the cortical compartment to IGFBP-4. These notions were supported by the in situ proliferation and apoptosis studies, which revealed that proliferating and apoptotic cells were predominantly located in the cortex, and that cell proliferation was inhibited and apoptosis was stimulated selectively in the cortex of transgenic mice but not in the medulla (Figs 8 and 9). Although IGFBP-4 was also expressed in the spleen of transgenic mice, no alteration in the architecture of the spleen was
observed; this is in agreement with the unchanged weight and volume of this organ. Interestingly, H-2K\(^b\)-hIGF-II transgenic mice did not show a spleen phenotype either (Buul-Offers et al. 1995, Van der Ven et al. 1997). hIGF-II was highly expressed in the spleen, thymus and liver of these mice, but only the postnatal growth of the thymus was promoted by IGF-II overexpression. The absence of splenomegaly in H-2K\(^b\)-hIGF-II transgenic mice was suggested to be a consequence of upregulation of IGFBP-3 expression in the spleen by elevated IGF-II (Smink et al. 1999). Whether the expression of some growth-regulating genes was altered by IGFBP-4 overexpression in the spleen, lung and kidney of our transgenic mice is unknown. The exclusive effect of IGFBP-4 on the growth of the thymus might be the consequence of an interaction with a thymus-specific factor whose identity, however, remains to be unravelled.

Effects on the immune functions

The functions of the IGF components in the immune system are very complex. Systemic administration of IGF-I significantly increased the size and cellularity of both primary and secondary lymphoid organs in rodents (Binz et al. 1990, Beschornier et al. 1991, Murphy et al. 1992, Clark et al. 1993, Jardieu et al. 1994). Furthermore, IGF-I administration enhanced immune response and altered lymphocyte survival and regeneration in thymus and spleen of dexamethasone-treated rats (Hinton et al. 1995, 1998). Administration of IGF-II also stimulates growth of the thymus and spleen, but to a lesser extent than IGF-I (Buul-Offers et al. 1994, Conlon et al. 1995). Overexpression of IGF-I in mice stimulates T- and B-cell development and antigen-specific IgG synthesis (Clark et al. 1993, Robbins et al. 1994). Overexpression of IGF-II in transgenic mice stimulated the development of phenotypically normal T-cells but not mature B-cells (Kooijman et al. 1995, 1997). IGFBPs are also expressed by lymphoid tissues. Normal human peripheral lymphocytes were shown to express mRNA for IGFBP-2 and -3, and after mitogenic stimulation they additionally express IGFBP-4 and -5 (Grellier et al. 1995). Thymic epithelial cells express different levels of IGFBP-2 to -6, with a predominance of IGFBP-4 (Kecha et al. 1999). IGFBP-4 has also been detected in murine thymic macrophages and in macrophage cell lines (Li et al. 1996). Overexpression of IGFBP-1 in transgenic mice led to inconsistent effects on spleen size (Dai et al. 1994, Murphy et al. 1995a, Rajkumar et al. 1995), overexpression of IGFBP-2 reduced spleen weight of male transgenic mice (Hoeflich et al. 1999), whereas overexpression of IGFBP-3 increased spleen size (Murphy et al. 1995b).
IGFBP-2 knockout mice show no gross phenotype except for a reduced spleen size (Wood et al. 2000).

Considering the high transgene expression in the spleen and thymus, we focused on the investigation of potential effects of IGFBP-4 overexpression on immune functions. First, the mitogenic response of T- and B-cells was determined by in vitro proliferation assays using T- and B-cell mitogens. The proliferative activity of the splenocytes was significantly reduced in transgenic mice after Con A and LPS stimulation (Fig. 7). To address the lymphocyte development of IGFBP-4 transgenic mice, FACS analysis was performed. No changes were found in percentages of different cell populations from the primary and secondary immune organs of transgenic mice (Fig. 10). This finding suggests that IGFBP-4 excess in the thymus and spleen did not affect the development of the immune-related cells. Finally, plasma levels of basal immunoglobulins and anti-DNA autoreactive antibodies were determined. No significant differences were found between transgenic and control animals (Fig. 11). These results indicate that IGFBP-4 excess in the thymus and spleen has no effect on the production of the humoral immunocompetence, and does not induce autoimmune disorders in transgenic mice.

In conclusion, overexpression of IGFBP-4 inhibits the growth of the thymus. IGFBP-4 excess inhibits cell proliferation and stimulates cell apoptosis in the lymphoid tissues, but does not affect lymphocytic development. These findings suggest that IGFBP-4 is a potential growth inhibitor of the lymphoid tissues.

Funding

RZ and MRS were supported by the German Academic Exchange Service (DAAD).

References

Buu-Olffers SC & Kooijman R 1998 The role of growth hormone and insulin-like growth factors in the immune system. Cellular and Molecular Life Sciences 54 1083–1094.

Dorshkind K & Horserman ND 2000 The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocrine Reviews 21 292–312.

Hwa V, Oh Y & Ronesfeldt RG 1999 The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocrine Reviews 20 761–787.

www.endocrinology.org
growth of the thymus in igfbp-4 transgenic mice

kecha o, martens h, franchimont n, ahour i, hazez-hagelstein mt, charlet-renard c, geenen v & winkler r 1999 characterization of the insulin-like growth factor axis in the human thymus. journal of molecular endocrinology 11 435–440.

kojojin r, buul-offers sc, soltens le, schuurman hj, van den brande lj & zegers bj 1995 t cell development in insulin-like growth factor-ii transgenic mice. journal of immunology 154 5736–5745.

kojojin r, buul-offers sc, soltens le, reijnjen-gresnigt rg & zegers bj 1997 t and b cell development in pituitary deficient insulin-like growth factor-ii transgenic dwarf mice. journal of endocrinology 153 165–170.

li ym, arkins s, mcusker rh jr, donovan sm, liu q, jayaraman s, dantzer r & kelley kw 1996 macrophages synthesize and secrete a 25-kilodalton protein that binds insulin-like growth factor-i. journal of immunology 156 64–72.

miyakoshi n, richman c, qin x, baylink dj & mohan s 1999 effects of recombinant insulin-like growth factor-binding protein-4 on bone formation parameters in mice. endocrinology 140 5719–5728.

miyakoshi n, qin x, kasukawa y, richman c, srivastava ak, baylink dj & mohan s 2001 systemic administration of insulin-like growth factor (igf)-binding protein-4 (igfbp-4) increases bone formation parameters in mice by increasing igf bioavailability via an igfbp-4 protease-dependent mechanism. endocrinology 142 2641–2648.

mohan s & baylink dj 2002 igf-binding proteins are multifunctional and act via igf-dependent and -independent mechanisms. journal of endocrinology 175 19–31.

mohan s, bautista cm, wergedal j & baylink dj 1989 isolation of an inhibitory insulin-like growth factor (igf) binding protein from bone cell-conditioned medium: a potential local regulator of igf action. pnas 86 8338–8342.

morello d, moore g, salmon am, yaniv m & babinet c 1986 studies on the expression of an h-2k/human growth hormone fusion gene in giant transgenic mice. embo journal 5 1877–1883.

murphy wj, durum sk & longo dl 1992 role of neuroendocrine hormones in murine t cell development. growth hormone exerts thymopoietic effects in vivo. journal of immunology 149 3831–3837.

murphy lj, rajkumar k & molnar p 1993a phenotypic manifestations of insulin-like growth factor binding protein-1 (igfbp-1) and igfbp-3 overexpression in transgenic mice. progress in growth factor research 6 425–432.

plitz t, hußstadt u, endres r, schaller e, mak tw, wagner h & pfeiffer k 1999 the resistance against listeria monocytogenes and the formation of germinal centers depend on a functional death domain of the 55 kda tumor necrosis factor receptor. european journal of immunology 29 581–591.

ruther u, muller w, sumida t, tokuhisa t, rajewsky k & wagner ef 1988 c-fos expression interferes with thymus development in transgenic mice. cell 53 847–856.

schneider mr, zhou r, hoeflich a, krebs o, schmidt j, mohan s, wolf e & lahn h 2001 insulin-like growth factor-binding protein-5 inhibits growth and induces differentiation of mouse osteosarcoma cells. biochemical and biophysical research communications 288 435–442.

silva cm, isgaard j & thorner mo 1998 cytokines in endocrine function. advances in protein chemistry 52 199–221.

smink j, koster jg, hendrik-stegerman bl & buul-offers sc 1999 insulin-like growth factor (igf) ii induced changes in expression of igf binding proteins in lymphoid tissues of higf-ii transgenic mice. endocrinology 140 5876–5882.

ui m, shimonaka m, shimasaki s & ling n 1989 an insulin-like growth factor-binding protein in ovarian follicular fluid blocks follicle-stimulating hormone-stimulated steroid production by ovarian granulosa cells. endocrinology 125 912–916.

van der ven lt, roholl pj, reijnjen-gresnigt mg, bloemen rj & buul-offers sc 1997 expression of insulin-like growth factor ii (igf-ii) and histological changes in the thymus and spleen of transgenic mice overexpressing igf-ii. histochemistry and cell biology 107 193–203.

wang j, nii w, nikiforov y, naito s, chernausek s, witte d, leroith d, strauch a & fagin ja 1997 targeted overexpression of igf-i evokes distinct patterns of organ remodeling in smooth muscle cell tissue beds of transgenic mice. journal of clinical investigation 100 1425–1439.

wood tl, roger le, cziek me, schuller ag & puntar je 2000 selective alterations in organ sizes in mice with a targeted disruption of the insulin-like growth factor binding protein-2 gene. molecular endocrinology 14 1472–1482.

zhang m, smith ep, kuroda h, banach w, chernausek sd & fagin ja 2002 targeted expression of a protease-resistant igfbp-4 mutant in smooth muscle of transgenic mice results in igfbp-4 stabilization and smooth muscle hypertrophy. journal of biological chemistry 277 21293–21299.

received in final form 2 december 2003
accepted 23 december 2003

www.endocrinology.org