Differentially expressed Maf family transcription factors, c-Maf and MafA, activate glucagon and insulin gene expression in pancreatic islet α- and β-cells

K Kataoka, S Shioda, K Ando¹, K Sakagami, H Handa¹ and K Yasuda

Laboratory of Molecular and Developmental Biology, Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5
Takayama-cho, Ikoma 630-0192, Japan
¹Frontier Collaborative Research Center, Tokyo Institute of Technology, Japan

Requests for offprints should be addressed to K Kataoka; Email: kkataoka@bs.aist-nara.ac.jp

Abstract

A basic-leucine zipper transcription factor, MafA, was recently identified as one of the most important transactivators of insulin gene expression. This protein controls the glucose-regulated and pancreatic β-cell-specific expression of the insulin gene through a cis-regulatory element called RIPE3b/MARE (Maf-recognition element). Here, we show that MafA expression is restricted to β-cells of pancreatic islets in vivo and in insulinoma cell lines. We also demonstrate that c-Maf, another member of the Maf family of transcription factors, is expressed in islet α-cells and in a glucagonoma cell line (αTC1), but not in γ- and δ-cells. An insulinoma cell line, βTC6, also expressed c-Maf, albeit at a low level. Chromatin immunoprecipitation assays demonstrated that Maf proteins associate with insulin and glucagon promoters in β- and α-cell lines, respectively. c-Maf protein stimulated glucagon promoter activity in a transient luciferase assay, and activation of the glucagon promoter by c-Maf was more efficient than by the other α-cell-enriched transcription factors, Cdx2, Pax6, and Isl-1. Furthermore, inhibition of c-Maf expression in αTC1 cells by specific short hairpin RNA resulted in marked reduction of the glucagon promoter activity. Thus, c-Maf and MafA are differentially expressed in α- and β-cells where they regulate glucagon and insulin gene expression, respectively.

Journal of Molecular Endocrinology (2004) 32, 9–20

Introduction

Endocrine cells of the pancreatic islets of Langerhans are divided into four types (α, β, δ and γ) depending on the hormones that they specifically secrete (glucagon, insulin, somatostatin or pancreatic polypeptide). These hormones play critical roles in the homeostasis of blood glucose levels, and the mechanisms of their specific expression have been extensively investigated. In particular, exclusive expression of insulin and glucagon in β- and α-cells, respectively, is known to involve a combination of multiple cell-type-specific transcription factors acting on their promoter regions (Drucker et al. 1987, Karlsson et al. 1987, Philippe et al. 1988, Crowe & Tsai 1989, Whelan et al. 1989, Shieh & Tsai 1991).

β-Cell-specific expression of insulin is mainly regulated through three conserved enhancer elements in the insulin promoter region termed E1, A3 and RIPE3b/C1 (Ohneda et al. 2000, Melloul et al. 2002). Two transcription factors, Beta2/NeuroD and Pdx1/IPF1/STF1/GSF1/IUF1, whose expression is restricted to pancreatic islets and which bind to the E1 and A3 elements, respectively, have been isolated (Ohlsson et al. 1993, Petersen et al. 1994, Naya et al. 1995, Marshak et al. 1996). The RIPE3b element is quite similar to the binding sequence of Maf family transcription factors termed MARE (Maf-recognition element) (Kataoka et al. 1994b), and recently we and others have identified the RIPE3b-binding factor (RIPE3b1 activator) as MafA, a member of the Maf family (Kataoka et al. 2002, Olbrot et al. 2002, Matsuoka et al. 2003).

In contrast, α-cell-specific expression of the glucagon gene is established by islet-specific enhancer elements (G2, G3 and G4) and an
Materials and methods

Cells

αTC1 clone 9 (hereafter αTC1) and βTC6 were purchased from the American Tissue Culture Collection (Manassas, VA, USA). MIN6 cells (Miyazaki et al. 1990) were a generous gift of Dr Jun-ichi Miyazaki (Osaka University, Japan). αTC1 cells were grown in F12K medium supplemented with 10% fetal bovine serum, and βTC6 and MIN6 cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 15% fetal bovine serum. HeLa and NIH3T3 cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum.

Immunostaining

Five-week-old mouse pancreas tissue was fixed overnight in 4% paraformaldehyde, embedded in Optical Cutting Temperature compound (Sakura, Tokyo, Japan) and snap frozen. Cryostat sections were cut at 10 µm. Anti-c-Maf (M-153, rabbit), anti-c-Maf (N-15, goat), anti-insulin A (C-12, goat), anti-glucagon (N-17, goat), anti-somatostatin (D-20, goat) (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), and anti-pancreatic polypeptide (guinea pig) (Linco Research Inc., St Louis, MO, USA) were obtained from commercial sources. Anti-MafA sera have been described previously (Kataoka et al. 2002). Anti-MafB serum was obtained by immunizing rabbits with a keyhole limpet hemocyanin-conjugated synthetic peptide (KEPLGRAERPGPRC) corresponding to the amino-terminal part of mouse MafB. Alexa Fluor 488-labeled anti-rabbit, goat or guinea pig IgG sera and Alexa Fluor 594-labeled anti-rabbit IgG serum (Molecular Probes, Inc., Eugene, OR, USA) were used as secondary antibodies. Immunostaining of cultured cells was performed as described previously (Kataoka et al. 2002). Mice were handled and used in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals.

Western blotting

HeLa cells were transfected with expression vectors for enhanced green fluorescent protein (EGFP) (pHygEF2/EGFP), mouse MafA (pHygEF2/m-mafA), mouse MafB (pHygEF2/m-mafB) or HA-tagged human c-Maf, which has a serine substituted by asparagine at the eighth amino acid position (pHygEF2/HA-h-c-maf-S8N), using Lipofectamine 2000 reagent (Invitrogen). Human c-Maf-S8N was used as a substitute for mouse c-Maf because the eighth amino acid residue of human (serine) and of mouse (asparagine) c-Maf is the only species difference within the amino-terminal half (first 177 amino acids) of these two proteins.

Aliquots of total cell extracts of αTC1, βTC6 or transfected HeLa cells were separated by 8% SDS-PAGE and transferred onto an Immobilon membrane (Millipore Corp., Bedford, MA, USA). The membrane was stained with anti-c-Maf (M-153), anti-c-Maf (N-15) (Santa Cruz Biotechnology), anti-MafA or anti-MafB sera, and then...
with horseradish peroxidase-conjugated anti-rabbit (Dako Corp., Carpinteria, CA, USA) or anti-goat IgG (Santa Cruz Biotechnology) secondary antibodies.

Chromatin immunoprecipitation assay

The chromatin immunoprecipitation assay was performed as described previously (Boyd et al. 1998). Anti-glutathione S-transferase (GST) (Santa Cruz Biotechnology) was used as a negative control for anti-c-Maf (M-153), and anti-MafA pre-immune serum for anti-MafA and anti-v-Maf (Kataoka et al. 1993) sera. PCR primers used were as follows: insulin II promoter, 5'-GGCCCCCTTG TTAAAGACTCTAATTACCCTAG-3' and 5'-CCT GCTTGCTGATGGTTTTTGATTGTAGCG-3'; glucagon promoter, 5'-TAAATTGTTCGGGGC CTCTGCGGTCTC-3' and 5'-AGTCCCCCTT GGGAACTTTGAGTGTGTCCT-3'; proliferating cell nuclear antigen (PCNA) promoter, 5'-CTAAA CTCCCACAAAACCTGGGGCGGTGAC-3' and 5'- AGGCCTACAGCGACAACTACCCACATACCAACCCTC-3'.

Luciferase assay

The mouse glucagon promoter region was amplified by PCR using primers (5'-caggtaccTTTGAC AGTCCCCTT and 5'-ccgagagaCTCCTTCTTCACGTCGAACttttt-3') from Balb/c mouse genomic DNA. The fragment was digested with KpnI and HindIII, and was inserted into the KpnI–HindIII site of the pGL2-basic plasmid (Promega) to generate m-ggn-p-luc.

The expression plasmid for mouse mafA (pHygEF2/m-mafA) has been described previously (Kataoka et al. 2002). The mouse mafB open reading frame was excised from the mouse genomic clone of the mafB locus (pMmb32) (a generous gift from Dr Makoto Nishizawa, unpublished observations) by digestion with EarI and was inserted into the EcoRV site of pBluescript II SK(−) in the T7–T3 direction. The pBluescript II SK(−)/m-mafB plasmid was then digested with ClaI and SpeI, and the fragment was inserted into the ClaI–XbaI site of the pHygEF2 expression vector to generate pHygEF2/m-mafB. A DNA fragment (Ptd–Nhel) containing the human c-maf open reading frame was excised from a human genomic clone that encompasses the c-maf locus (pHM-3) (a generous gift from Dr Makoto Nishizawa, unpublished observations), and was inserted into the PstI–Nhel site of pGEM3 (Promega) to generate pGEM3/h-c-maf. The plasmid was digested with XbaI and Nhel, and the resultant h-c-maf-containing fragment was inserted into XbaI-digested pHygEF2 to generate pHygEF2/h-c-maf. The mouse cdx2 open reading frame was amplified by RT-PCR from TC6 total RNA using primers 5'-CTCTGGGTCCCTCG CCACCATGTACGGTGAGTTC-3' and 5'-CACGGGAGG GGTCAGTGGTACAGTGJ3', and inserted into pGEM-T-easy (Promega) by T/A cloning. The plasmid was digested with NotI and the fragment was inserted into the NotI site of pHygEF2 to generate pHygEF2/m-cdx2. The Pax6 expression vector pCAGGS/Pax6 and pCAGGS/Pax6–5a were generous gifts from Dr Noriyuki Azuma (National Children’s Hospital, Tokyo, Japan) and Dr Yuki Yamaguchi (Tokyo Institute of Technology, Yokohama, Japan) (Yamaguchi et al. 1997). Expression plasmids for FLAG-tagged mouse Isl1 splicing isoforms (pHygEF2/FLAG–isl1-α and pHygEF2/FLAG–isl1-β) have been described previously (Ando et al. 2003).

An expression vector to express short hairpin RNA (shRNA) was designed to clone a double-stranded synthetic oligonucleotide into U6 small nuclear RNA promoter (Sui et al. 2002) using BseRI–HindIII restriction sites. The oligonucleotides used were as follows: c-maf, 5'-ACTACTACT GGATGACCGTTCAAGAGAAGGGTTAACAGTTT-3' and 5'-gtatgaataAAAAGGTTACACTACT GGATGACCGTTCAAGAGAAGGGTTAACAGTTT-3'; ma6B, 5'-TTCCGACGTGAAAGAAGGAGG TCTCCATTCAGGATCAGGTAC-3'; mafB, 5'-AGTGACCGTCTCCATTCAGGATCAGGTAC-3'; and 5'-gtatgaataAAAAGGTTACACTACTGGATGACCGTTCAAGAGAGGG TCTCCATTCAGGATCAGGTAC-3'.

αTC1 or NIH3T3 cells grown in 12-well plates were transfected with a total of 1·6 µg plasmid (0·1 µg luciferase plasmid, 1·4 µg expression plasmid and 0·1 µg pEF–Rluc) using 4 µl Lipofectamine 2000 (Invitrogen). Cells were harvested 24 h after transfection. Firefly and Renilla luciferase activities were measured using the Dual Luciferase Assay System (Promega).

Results

Expression of Large Maf members in pancreatic islet endocrine cells

We have previously shown that MafA protein is specifically expressed in mouse β-cell lines (insulinoma,
MIN6 and βTC6), but is not detected in an α-cell line (glucagonoma, αTC1) (Kataoka et al. 2002). However, it remained to be determined whether MafA expression is restricted to the β-cells of pancreatic islets in vivo. We therefore stained adult mouse pancreas with anti-MafA antiserum, which was raised against a MafA-specific peptide. As shown in Fig. 1A (top panels), most, but not all, nuclei of islets were clearly stained by the MafA serum. Double staining with antibodies to specific cell markers, anti-insulin (β-cell) (Fig. 1A, left panels), anti-glucagon (α-cell) (Fig. 1A, second left panels), anti-somatostatin (δ-cell) (Fig. 1A, third left panels), or anti-pancreatic polypeptide (γ-cell) (Fig. 1A, right panels), clearly revealed that MafA is selectively expressed in insulin-producing β-cells. MafA expression never overlapped with that of glucagon, somatostatin or pancreatic polypeptide.

We also used anti-c-Maf (M-153) antibody (Santa Cruz Biotechnology), which was raised against a c-Maf recombinant protein of 153 amino acids and was expected to cross-react with the other Large Maf family members, MafA, MafB and Nrl. As shown in Fig. 1B (top panels), nuclear staining of islet cells was observed with this antibody. Nuclei of some non-islet cells also stained positively (Fig. 1B, top panels, arrowheads), but the cell type of these cells remains to be determined. By double staining, we found that insulin-positive cells stained positively with anti-c-Maf (M-153). However, in contrast to anti-MafA staining, some cells positive for staining with anti-c-Maf (M-153) were negative for insulin (Fig. 1B, left panels, arrows) but were positive for glucagon (Fig. 1B, second left panels). These data indicated that c-Maf and/or immunologically related Large Maf proteins other than MafA are expressed in α-cells. It is also possible that in addition to MafA, β-cells express other Large Maf proteins.

Preferential expression of MafA and c-Maf in β- and α-cell lines

In order to define which members of the Large Maf family are expressed in islet α- and β-cells, we first determined the specificities of available antibodies to Large Maf proteins by Western blotting. Extracts of HeLa cells transfected with an expression vector for EGFP, MafA, MafB, or c-Maf were separated by SDS-PAGE and blotted with anti-c-Maf (M-153) (Fig. 2, left panels, top). As expected, all of the MafA, MafB and c-Maf proteins were recognized by this antiserum. Anti-c-Maf (M-153) also reacted with Nrl (data not shown). The anti-MafA peptide serum described above reacted with MafA, but not with MafB or c-Maf (Fig. 2, second panel). We also raised an antiserum against the MafB-specific peptide, and found that it (anti-MafB) specifically reacted with MafB (Fig. 2, third panel). Moreover, the anti-c-Maf (N-15) antibody (Santa Cruz Biotechnology) selectively reacted with c-Maf (Fig. 2, bottom panel), although it reacts only weakly with c-Maf of mouse origin, probably because it was raised against human c-Maf peptide and the mouse c-Maf epitope contains a single amino acid substitution that differs in human c-Maf (data not shown).

We subsequently used these antibodies to detect Maf proteins expressed in glucagonoma and insulinoma cell lines. Western blot analysis of total cell extracts derived from αTC1 (glucagonoma) and βTC6 (insulinoma) cells with anti-c-Maf (M-153) indicated that both cell types express Large Maf proteins (Fig. 2, right panels, top). As was the case for HeLa cell transfectants, it was quite difficult to distinguish MafA, MafB and c-Maf by their apparent molecular masses (approximately 50 kDa) in SDS-PAGE, because they are phosphorylated on multiple sites (Benkhelifa et al. 2001). It was possible to distinguish Nrl, since it migrates faster (approximately 30 kDa) when transfected into HeLa cells (data not shown). However, in αTC1 and βTC6 cells, we did not detect cross-reacting protein species of this molecular mass (data not shown). Next, by using specific antisera, we found that MafA is expressed in βTC6 cells but not αTC1 (Fig. 2, second panel) and that MafB is expressed in neither cell line (Fig. 2, third panel). Using anti-c-Maf (N-15), we found that αTC1 cells specifically express c-Maf (Fig. 2, bottom panel), but we also detected a marginal amount of c-Maf in βTC6 cells (Fig. 2, bottom panel).

We further used these antibodies to immunostain HeLa cells which had been transiently transfected with an expression vector for MafA, MafB or c-Maf (Fig. 3A). This indicated that anti-c-Maf (M-153) reacted with MafA, MafB and c-Maf, whereas anti-MafA, anti-MafB and anti-c-Maf (N-15) sera were specific to MafA, MafB and c-Maf respectively.

Furthermore, we stained αTC1 and βTC6 cells with these sera (Fig. 3B). Nuclear staining of αTC1
Figure 1 Differential expression of Large Maf proteins in islets of the pancreas. Sections of adult mouse pancreas were double-stained with (A) anti-MafA or (B) anti-pan-Large Maf (anti-c-Maf (M-153)) (red, top panels) serum and with anti-insulin (Ins), anti-glucagon (Ggn), somatostatin (Som) or anti-pancreatic polypeptide (Ppy) serum (green, second panels). DNA was also stained with 4,6-diamidino-2-phenylindole (DAPI) (blue, bottom panels). All the MafA-expressing cells were positive for staining of insulin (A), whereas anti-c-Maf (M-153) serum stained both insulin- and glucagon-expressing cells (B). Arrowheads in panel B indicate Maf-positive non-islet cells, and arrows indicate Maf-positive and insulin-negative cells.
cells was observed using anti-c-Maf (M-153) and anti-c-Maf (N-15), indicating that αTC1 cells express c-Maf. In contrast, anti-c-Maf (M-153) and anti-MafA sera stained the nuclei of βTC6 cells. In contrast to the Western blotting data (Fig. 2), anti-c-Maf (N-15) serum produced no signal. This is probably because this antiserum reacts weakly with c-Maf of mouse origin as described above, and/or because the level of c-Maf protein in βTC6 cells is below the threshold required for detection by immunofluorescent staining with this antiserum.

We also stained sections of mouse pancreas with anti-MafB and anti-c-Maf (N-15) antisera. Using anti-MafB, we did not observe any signal in pancreas, whereas it did react with lens cell nuclei, where MafB is known to be expressed (Sakai et al. 1997) (data not shown). However, unfortunately, we could not detect positive signals when using anti-c-Maf (N-15) serum, even in lens fiber cells (where c-Maf protein expression would be expected (Kawauchi et al. 1999, Kim et al. 1999, Ring et al. 2000)). This may reflect its low reactivity with mouse c-Maf, as described above, and/or incompatibility of this antiserum with the section staining procedure.

Taken together, these results indicated that in pancreatic islets (i) MafA is specifically expressed in β-cells, (ii) c-Maf is expressed in α-cells, (iii) δ- and γ-cells do not express Large Maf proteins, and (iv) c-Maf is possibly expressed at low levels in β-cells.

Maf proteins interact with the glucagon and insulin promoters in vivo

We and others have previously shown that MafA is a transactivator that binds to the RIPE3b/MARE element of the insulin promoter (Kataoka et al. 2002, Olbrot et al. 2002, Matsuoka et al. 2003). In addition, Planque et al. (2001) have shown that the Large Maf family members can activate the glucagon promoter by binding to a MARE-like element in the G1 domain of that promoter. Although Matsuoka et al. (2003) have shown that MafA binds to the insulin promoter region in a β-cell line by a chromatin immunoprecipitation assay, direct evidence that Maf proteins bind to the...
Figure 3 Immunofluorescent staining. HeLa cells transfected with expression vectors for MafA, MafB or c-Maf (A), or αTC1 and βTC6 cells (B) were stained with anti-c-Maf (M-153), anti-MafA, anti-MafB or anti-c-Maf (N-15) antibodies and Alexa-Fluor 488-labeled secondary antibody (green) and with 4,6-diamidino-2-phenylindole (blue).
glucagon promoter in vivo is lacking. We therefore examined whether Maf binds to the promoter in α- and β-cell lines by a chromatin immunoprecipitation assay.

We found that anti-c-Maf (M-153) specifically precipitated the glucagon promoter region from αTC1 cells, but did not precipitate the insulin or unrelated PCNA promoters (Fig. 4). This indicated that c-Maf in αTC1 cells associates specifically with the glucagon promoter. Conversely, this antisera precipitated the insulin promoter region in βTC6 and MIN6 cells, demonstrating that MafA (and possibly c-Maf) specifically interact with the insulin promoter in β-cell lines. Specific association of MafA with the insulin promoter in MIN6 cells was also evident by using anti-MafA and another pan-Large Maf serum (anti-v-Maf). These results clearly showed that c-Maf in α-cells and MafA (and c-Maf) in β-cells specifically bind to the glucagon and insulin promoters respectively, in vivo.

Activation of the glucagon promoter by c-Maf

We have previously showed that MafA alone is a much stronger transactivator for the insulin promoter than the other insulin promoter transcription factors, Pdx1 and Beta2 (Kataoka et al. 2002). We therefore compared the transcriptional activity of c-Maf with other transcription factors that have been shown to be involved in transcription of the glucagon gene, such as Cdx2, Pax6 and Isl-1α, and their splice variants Pax6–5a and Isl-1β. Transfection of the glucagon promoter-luciferase reporter into fibroblast cells (NIH3T3) with an expression vector for c-Maf resulted in a great increase in luciferase activity (Fig. 5). When the MARE-like sequence of the promoter was mutated, this activation was greatly reduced (data not shown). We also found that c-Maf was the most efficient transactivator for the glucagon promoter among these α-cell-enriched transcription factors (Fig. 5).

In order to evaluate the role of Maf proteins in glucagon gene transcription in α-cells, we designed shRNA expression vectors targeted to inhibit c-Maf or MafB expression. Specificity of these shRNAs was verified by co-transfection into NIH3T3 cells (Fig. 6A). Expression of c-Maf and MafB proteins was specifically interfered with by c-maf and mafB shRNAs respectively. We then transfected these shRNA vectors into αTC1 cells with the glucagon promoter-luciferase reporter. As shown in Fig. 6B (left panel), co-transfection of c-maf shRNA resulted in significant decrease of the luciferase activity, whereas mafB shRNA had no effect. Furthermore,
activity of control EF1α (elongation factor 1α) promoter was not affected by these shRNAs (Fig. 6B right panel). We also found that mutation in the MARE-like sequence in the glucagon promoter resulted in a marked reduction in its activity in αTC1 cells (data not shown). These results strongly support the idea that binding of c-Maf in β-cells to the MARE sequence within the glucagon promoter is necessary for its full promoter activity.

Discussion

In this report, by defining specificities of available anti-Maf antibodies, we provide a demonstration of endocrine cell-type-specific distribution of Large Maf family members in pancreatic islets. MafA is specifically expressed in β-cells, and c-Maf in α-cells. These expression profiles are quite similar for both glucagonoma and insulinoma cell lines. We also found that β-cells possibly express a small amount of c-Maf. We further provide direct evidence that c-Maf and MafA bind to the promoter of the cell-type-specific hormone genes, glucagon and insulin, respectively, and activate their expression.

Recently, Matsuoka et al. (2003) have also reported that MafA is expressed in β-cells of islets. They also demonstrated that MafB is expressed in α-cells and in a small fraction of β-cells of mouse islets by immunostaining. However, in our investigation, MafB protein was not detected in islets of the pancreas. This discrepancy may come from the different anti-MafB sera used in these two studies, and expression of MafB and its role in pancreatic islets needs to be examined carefully. In this study, we showed that c-Maf, but not MafB, is expressed in αTC1 cells, although both c-maf and mafB mRNA were expressed (K Kataoka, unpublished observations). We also showed that c-maf shRNA, but not mafB shRNA, affected the glucagon promoter activity in αTC1 cells. Therefore, regulation of MafB expression at a post-transcriptional level, such as control of translation and/or protein stability, may exist, and thus MafB protein may be expressed in endocrine cells during the development of pancreatic islets.

It has been shown that L-Maf (the chicken homologue of MafA), MafB and c-Maf are expressed in lens cells in similar, but different, spatio-temporal patterns, where they regulate expression of lens-specific crystallin genes and lens development (Ogino & Yasuda 2000). For example, in chicken, L-Maf expression is seen initially in lens placode and persists during lens fiber cell differentiation (Ogino & Yasuda 1998). In rodents, c-Maf is expressed in lens fiber cells, whereas MafB is expressed in lens epithelial cells (Sakai et al. 1997, Kawauchi et al. 1999, Kim et al. 1999, Ring et al. 2000). On the contrary, Nrl is specifically expressed in rod cells of neural retina, and regulates rhodopsin transcription and retinal development (Mears et al. 2001). This kind of expression pattern and gene regulation by Large Maf members is analogous to our finding that MafA and c-Maf are expressed in different endocrine cells (β- and α-cells) of islets and regulate insulin and glucagon expression. As far as we have determined, endocrine δ- and γ-cells do not express Large Mafs, but there remains the possibility that these cells express Maf members in some stages of development.

Insofar as we have determined, c-Maf is the strongest transactivator of the glucagon promoter among the other α-cell-expressed transcription factors, Cdx2, Pax6 and Isl1. We previously found that MafA was a much stronger transactivator of the insulin promoter than two other β-cell-specific transcription factors, Pdx1 and Beta2, and that no synergistic transactivation was observed between

Figure 5 Activation of the glucagon promoter by α-cell-enriched transcription factors. NIH3T3 cells were transfected with 100 ng luciferase plasmid driven from glucagon promoter and 100 ng expression plasmids for c-Maf, Cdx2, Pax6, Pax6–5a, Isl1-α or Isl1-β. Twenty-four hours after transfection, cells were harvested and luciferase activity was measured. Data are expressed as mean values±S.E. of two independent experiments.
MafA and Pdx1 or Beta2 (Kataoka et al. 2002). Synergistic activation of the glucagon promoter by Large Maf proteins and Pax6 has been reported previously (Planque et al. 2001), but we did not find any synergy between c-Maf and Cdx2, Pax6 or Isl-1 in our transient transfection assays which employed NIH3T3 cells (K Kataoka, unpublished observations).

Figure 6 RNA interference. (A) Specificity of shRNAs. NIH3T3 cells were transfected with 0.1 µg expression plasmids for MafA, MafB or c-Maf and 1.5 µg shRNA vector driven by U6 small nuclear RNA promoter. Whole-cell extracts were prepared 24 h after transfection and were analyzed by Western blotting using anti-c-Maf (M-153) serum. (B) Luciferase reporter plasmid (0.1 µg) driven from the mouse glucagon promoter (left) or EF1α promoter (right) was transfected into αTC1 cells with shRNA vector constructs (1.4 µg). Relative luciferase activities are shown as mean values ± S.E. of five (c-maf) or three (mafB) independent experiments. Statistical significance was calculated by Student’s t-test. *P < 0.005.
Recently, MafA was shown to bind and activate a β-cell-specific enhancer element of the Pdx1 transcription factor (Samaras et al. 2003). Therefore, MafA is possibly involved in regulating other β-cell-specific genes such as GLUT2 and glucokinase. Similarly, c-Maf may also regulate other α-cell-specific genes. Many transcription factors have been identified to date that are involved in insulin or glucagon transcription, and many of them are shown to be also necessary for β- and α-cell development respectively (St-Onge et al. 1999, Dohrmann et al. 2000, Schwitzgebel 2001). Thus, MafA and c-Maf may also play important roles in the development of these endocrine cells. Generation of a mafA knockout mouse and investigation of its β-cell development and insulin secretion may help to elucidate this possibility. To date, there have been no reports of defective α-cell development or glucagon secretion in c-maf knockout mice (Kawauchi et al. 1999, Kim et al. 1999, Ring et al. 2000), but results we present may justify a re-examination of these models. It will also be important to determine the expression profiles of c-Maf, MafA and MafB during normal pancreatic development and in mice that show defects in islet cell development such as pdx1, beta2 and pax6 knockouts. These approaches may ultimately help to elucidate the genetic cascade involved in the regulation of islet cell development.

Acknowledgements

We thank Dr Yuji Kageyama and Dr Hasan Mahmud Reza for helpful discussions. We are also grateful to Jun-ichi Miyazaki (Osaka University) for the MIN6 cell line, Dr Makoto Nishizawa for recombinant genomic clones of mouse mafB (pMmb32) and human c-maf (pHM-3), Dr Noriyuki Azuma (National Children’s Hospital, Tokyo) and Dr Yuki Yamaguchi (Tokyo Institute of Technology, Yokohama) for pCAGGS/Pax6 and pCAGGS/Pax6–5a plasmids. This work was supported by Grants-in-Aid for Scientific Research on Priority Areas, for Encouragement of Young Scientists, and of the 21st Century COE Program from the Ministry of Education, Culture, Sports, Science and Technology in Japan, and a grant from the Ministry of Health, Labor and Welfare in Japan to K K.

References

Crowe DT & Tsai MJ 1989 Mutagenesis of the rat insulin II 5’-flanking region defines sequences important for expression in HIT cells. *Molecular and Cellular Biology* 9 1784–1789.

Differential expression of Maf family in pancreatic islets

Received 22 September 2003
Accepted 29 October 2003