A\textsubscript{1} adenosine receptors mediate hypoglycemia-induced neuronal injury

C P Turner*, M R Blackburn1 and S A Rivkees

Department of Pediatrics, Yale Child Health Research Center, 464 Congress Avenue, New Haven, Connecticut 06520, USA
1Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin, Houston, Texas 77030, USA

(Requests for offprints should be addressed to C P Turner, c/o Scott Rivkees, Yale Child Health Research Center, New Haven, CT 06520, USA; Email: scott.rivkees@yale.edu.)

*(C P Turner is now at Neurobiology and Anatomy, Wake Forest University Medical School Medical Centre Boulevard, Winston-Salem, NC 27157010, USA)

Abstract

The cellular mechanisms that lead to neuronal death following glucose deprivation are not known, although it is recognized that hypoglycemia can lead to perturbations in intracellular calcium ([Ca2+]\textsubscript{i}) levels. Recently, activation of A\textsubscript{1} adenosine receptors (A\textsubscript{1}AR) has been shown to alter [Ca2+]\textsubscript{i} and promote neuronal death. Thus, we examined if A\textsubscript{1}AR activation contributes to hypoglycemia-induced neuronal injury using rat cortical neurons. First, we observed that hypoglycemia was associated with large increases in neuronal adenosine release. Next, decreased neuronal viability was seen with progressive reduction in glucose concentration (25, 6, 3, 0·75 and 0 mM). Using the calcium-sensitive dye, Fluo-3, we observed both acute and long-term changes in relative [Ca2+]\textsubscript{i} during hypoglycemic conditions. Demonstrating a role for adenosine in this process, both the loss in neuronal viability and the early changes in [Ca2+]\textsubscript{i} were reversed by treatment with A\textsubscript{1}AR antagonists (8-cyclopentyl, 1,3-dipropylxanthine; 9-chloro-2-(2-furyl)(1,2,4)-triazolo(1,5-c)quinazolin-5-amine; and N-cyclopentyl-9-methyladenine). We also found that hypoglycemia induced the expression of the pro-apoptotic enzyme, caspase-3, and that A\textsubscript{1}AR antagonism reversed hypoglycemia-induced caspase-3 activity. Collectively, these data show that hypoglycemia induces A\textsubscript{1}ARs activation leading to alterations in [Ca2+]\textsubscript{i}, which plays a prominent role in leading to hypoglycemia-induced neuronal death.

Introduction

Hypoglycemia can injure both the mature and immature nervous system (Agardh \textit{et al.} 1980, Hawdon 1999, Vannucci \& Vannucci 2001). However, our understanding of the mechanisms of hypoglycemia-induced neuronal injury is still evolving. The mechanisms that induce neuronal injury following glucose deprivation are more complex than simply depriving neurons of their primary energy source (Auer \& Siesjo 1993). Rather, hypoglycemic injury may involve altered neurotransmitter action, resulting from the release of excitatory amino acids, such as glutamate (Wieloch 1985, Butcher \textit{et al.} 1987, McGowan \textit{et al.} 2002) or other neurochemicals, such as adenosine (Fowler 1993, Zhu \& Krnjevic 1993, Calabresi \textit{et al.} 1997), which can influence neuronal function and survival (Dunwiddie \& Masino 2001, Turner \textit{et al.} 2002a,b).

Adenosine is usually present in the extracellular space at low concentrations (Fowler 1993, Zhu \& Krnjevic 1993, Dunwiddie \& Masino 2001). However, under conditions of hypoxia, tissues inflammation or hypoglycemia, local adenosine levels increase markedly (Fredholm \textit{et al.} 1994, Haas \& Selbach 2000, Dunwiddie \& Masino 2001, Rivkees \textit{et al.} 2001). After its release, adenosine acts via specific G-protein coupled receptors that include the A\textsubscript{1}, A\textsubscript{2A}, A\textsubscript{2B}, and A\textsubscript{3} adenosine receptors (Fredholm \textit{et al.} 1994, Olah \& Stiles 1995). Of these receptor subtypes, A\textsubscript{1} adenosine receptors (A\textsubscript{1}ARs) have the highest affinity for adenosine and are activated following increased extracellular adenosine levels (Dunwiddie &
Masino 2001, Rivkees et al. 2001). In the brain, A1ARs are abundantly and widely expressed (Fastbom et al. 1987) and mediate many of the important effects of adenosine in the central nervous system (Dunwiddie & Masino 2001, Rivkees et al. 2001).

Activation of A1ARs in the adult brain is reported to protect neurons against excitotoxic injury (von Lubitz & Marangos 1990, Simpson et al. 1992). However, recent evidence shows that in young animals, A1AR activation actually promotes injury in the developing brain (Turner et al. 2002b) by mechanisms which appear to involve altered intracellular calcium levels ([Ca2+]i) (Turner et al. 2002a). Thus, adenosine-induced effects and A1AR action vary throughout development.

Increasing evidence shows that regulation of [Ca2+]i within a narrow range is critical for neuronal survival, as too much or too little [Ca2+]i results in neuronal death (Johnson et al. 1992, Zipfel et al. 2000). Changes in [Ca2+]i play a role in a number of pathological conditions (Duchen 2000, Zhu et al. 2000), and altered [Ca2+]i is observed following hypoglycemia (Cheng & Mattson 1992, Silver et al. 1997). Adenosine, which is released following hypoglycemia, can influence [Ca2+]i, by activation of A1ARs (Mynlieff & Beam 1994, Wu & Saggau 1994). Activation of A1ARs can induce depression of neuronal firing following hypoglycemia (Calabresi et al. 1997), suggesting that a relationship between hypoglycemia, altered [Ca2+]i and A1ARs may exist.

Considering the above observations, we hypothesized that A1ARs may mediate hypoglycemia-induced neuronal death via a mechanism that involves changes in [Ca2+]i. To permit direct observations of the effects of glucose deprivation on neurons, we studied isolated neurons in culture. We have also studied changes in relative [Ca2+]i ([Ca2+]i) following hypoglycemia and examined the role of A1ARs in mediating hypoglycemia-induced effects.

Research design and methods

Drugs

8-cyclopentyl, 1,3-dipropylxanthine (DPCPX), 9-chloro-2-(2-furyl)(1,2,4)-triazolo(1,5-c)quinazolin-5-amine (CGS 15943), N-cyclopentyl-9-methyladenine (CPMA) and halothane were obtained from Sigma (St Louis, MO, USA). Ionomycin was obtained from CalBiochem (San Diego, CA, USA). 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'–tetraacetic acid-AM (BAPTA-AM) was obtained from Molecular Probes (Portland, OR, USA). Drugs were dissolved in 100% DMSO or 100% ethanol and diluted at least 1000-fold in each study.

Isolation of cortical neurons

The Yale Animal Care and Use Committee approved the use of animals in all experiments. Cortical neurons were prepared according to commonly used methods (Brewer et al. 1993). Briefly, embryonic day 18 rats (Sprague–Dawley) were removed from the uteri of anesthetized dams (halothane, 1–2%) and kept on ice in calcium, magnesium-free Hanks’ balanced salt solution (containing 10 mM Hepes, 2 mM sodium pyruvate; GIBCO/BRL, Rockville, MD, USA). Whole brains were removed and cortical tissue was isolated and placed into Hibernate E medium (supplemented with B27; GIBCO/BRL). The cortical tissue was pooled, triturated gently and centrifuged (200 g, 1 min). The cell pellet was resuspended in neurobasal medium (NBM) (GIBCO/BRL) containing 25 µM L-glutamate (Sigma), 0.5 mM L-glutamine, penicillin–streptomycin and B27 supplements (GIBCO/BRL). Cells were placed in poly-D-lysine (Sigma) coated, 12-well plates (Costar; Corning, Inc., Corning, NY, USA). Media were changed on the third day after initial dispersion using glutamate-free, NBM (containing 25 mM glucose). Cells were fed with glutamate-free NBM every 4–5 days thereafter or until additional changes were made. The percentage of neurons in these cultures was typically around 98%, as determined by staining for the neuronal marker, NeuN (Wolf et al. 1996, Turner et al. 2002a). A cell density of 0.5 × 10^6 cells per well was used in all experiments.

Experimental procedures

Neurons were cultured in 25 mM glucose-NBM for 7 days. Some cultures remained in 25 mM glucose-NBM for a further 5 days, while in other cultures the medium was changed to 6 mM glucose-NBM for 5 days. In some experiments, cultures were exposed to Locke’s solution (in mM: NaCl, 154; KCl, 5.6; CaCl2, 2.3; MgCl2, 1.0;
Fluorescein diacetate (FDA) staining

To identify living cells, 2 µg/ml FDA (Sigma) were added to the medium. FDA is esterified and accumulates to its fluorescein derivative only in living cells (Rotman & Papermaster 1966). After incubation with FDA for 5 min, cells were washed three times with PBS and photographed at low magnification under UV fluorescence on an inverted fluorescence microscope (Olympus IX-FLA; Olympus America, Inc., Melville, NY, USA). Each image was analyzed using software that readily distinguishes labeled cells from background (Image Pro software; Image Pro, Inc., Boston, MA, USA). Four separate fields per well were captured digitally and the mean ± s.e. estimated across four wells per treatment group.

Caspase-3 activity

To determine if neuronal injury involves pathways associated with programmed cell death, neurons were incubated with the fluorescein-conjugated, selective caspase-3 inhibitor, FAM-DEVD-FMK (CaspaTag Assay Kit; Serological, North Cross, GA, USA) for 1 h in a tissue culture incubator (37 °C, 5% CO2). This irreversible inhibitor binds to the active form of caspase-3. Cells were then washed twice with 1× wash buffer (supplied in the CaspaTag kit). Caspase-3-positive cells were easily identified as FAM-DEVD-FMK emits a green fluorescent signal when excited by UV light. Four fields per well were photographed under UV fluorescence with the Olympus IX-FLA fluorescence microscope. Caspase-3-positive cells were counted (Image Pro software) and the mean (± s.e.) determined across four wells per treatment group.

Confocal microscopy

Changes in r[Ca2+]i were determined by confocal microscopy, as described (Turner et al. 2002a). Non-ratiometric dyes such as Fluo-3 are better suited to this experimental goal than ratiometric dyes because they are inherently more sensitive and respond more rapidly to changes in [Ca2+]i (information from Molecular Probes). Used in this manner, Fluo-3 is well suited to monitor changes in intracellular Ca2+ signaling that occur in sub-second and second time frames. Consequently, to indicate altered Ca2+ signaling, we studied hypoglycemia-induced changes in r[Ca2+]i following depolarizing stimuli, using Fluo-3 loaded neurons.

Neurons were plated on poly-d-lysine-coated, 22 × 40 mm cover slips and grown for 12 days in vitro. In 25 mM glucose-NBM, neurons were loaded for 20 min with the Ca2+-sensitive dye, Fluo-3-AM (25 ng/ml) (Molecular Probes), plus Pluronic F127 (50 ng/ml) (Molecular Probes) to facilitate Fluo-3-AM entry into the cells. The acetoxymethyl ester (AM) group is cleaved, trapping Fluo-3 inside the cell (information from Molecular Probes). Coverslips were then mounted into recording chambers that allowed a laminar-flow exchange of medium. NBM was then replaced with Hibernate E/B27 medium, which can maintain neuronal viability outside of the incubator environment for extended periods (Brewer & Price 1996).

Because [Ca2+]i increases following depolarization (Franklin & Johnson 1992), we examined changes in Fluo-3 intensity in cells stimulated with KCl (50 mM in Hibernate E/B27). After addition of KCl, changes in Fluo-3 intensity were monitored at discrete intervals over time (because the response of the cells to KCl varied between preparations, the scan frequency and total recording period were modified accordingly). Following each recording, cells were washed three times with fresh medium and allowed to recover for 3–5 min. We observed that Fluo-3 intensity returned to baseline values after the first or second wash (5–10 s). Because Fluo-3 is not a ratiometric dye, changes in [Ca2+]i were relative and are therefore referred to as r[Ca2+]i.

Fluo-3 images were captured as multi-TIFF files and expressed as plots of intensity over time (FluoView; Olympus). Confocal imaging was performed on at least three separate fields of cells for each cover slip, in three separate studies, using neurons isolated from different litters for each study. Cells within each field were randomly selected (n = 15 per field) for analysis of changes in r[Ca2+]i.
Adenosine measurements

Aliquots of media were collected and stored at −70 °C until processed. Nucleosides were extracted and quantified as described (Knudsen et al. 1992, Blackburn et al. 1998). For extraction of nucleosides, media samples were thawed on ice in the presence of perchloric acid at a final concentration of 0·4 M. Samples were vortexed and placed on wet ice for 15 min. Samples were then neutralized with 0·6 M KHCO₃ and 0·72 M KOH. After clarification by centrifugation, samples were analyzed by reversed phase HPLC as described (Blackburn et al. 1998). Adenosine peaks were verified by enzymatic shift assay using adenosine deaminase (Knudsen et al. 1992) and adenosine levels were quantified by comparison with known amounts of adenosine resolved by the same protocol.

Statistical analysis

For cell viability assays, the mean number (± s.e.) of FDA-positive cells was determined per treatment group and data were normalized to percent of control values (control values represent 100% viability). Statistical differences were determined by ANOVA using a Bonferroni post-test comparison of means (GraphPad Prism v3·0; GraphPad Software, Inc., San Diego, CA, USA). For confocal studies, changes in Fluo-3 intensity over time for each cell were normalized to the baseline intensity of that cell, averaged for all cells sampled (n=15 per field) and the mean intensity at each time point determined. The transformed data were then fitted to the general equation:

\[Y = \text{bottom} + \frac{\text{max} - \text{min}}{1 + \exp\left(\frac{T_{50} - X}{\text{slope}}\right)} \]

where \(Y = \) percent baseline intensity, \(X = \) time, \(\text{max} = \) maximum, \(\text{min} = \) minimum (GraphPad Prism v3·0). From these curves the max and \(T_{50} \) (time to reach 50% of maximum) were derived. Differences in the max and \(T_{50} \) values were compared by ANOVA using a Bonferroni post-test comparison of means (GraphPad Prism v3·0).

Results

Hypoglycemia-induced cell death in NBM

We first examined effects of hypoglycemia on neurons cultured in the commonly used NBM (Brewer et al. 1993). Cells were initially cultured in 25 mM (450 mg/dl) glucose in NBM (25 mM glucose-NBM) for 7 days, as this is the standard glucose concentration for NBM. Because 25 mM glucose is considerably higher than physiological levels (80–150 mg/dl or 4·4–8·3 mM), the media were replaced with 6 mM glucose-NBM, which represents a mid-range physiological glucose concentration, for an additional 5 days. For comparison, some cultures remained in 25 mM glucose-NBM for the duration of the experiment. Both sets of cultures were then subjected to progressively lower concentrations of glucose for 24 h. Cell viability was then assessed by FDA labeling.

When neurons that were cultured in 25 mM glucose-NBM were exposed to progressively lower concentrations of glucose (6, 3, 0·75, 0 mM), we observed a modest loss in FDA-positive cells, decreasing to 85% through to 57% of control values (25 mM glucose control=100% viability, indicated by black bar; Fig. 1A). When cells that were exposed to 6 mM glucose-NBM for 5 days were then exposed to progressively lower concentrations of glucose (3, 0·75, 0 mM), a similar loss of FDA-positive cells was observed, decreasing to 86% through to 49% of control values (6 mM glucose control=100% viability, indicated by black bar; Fig. 1B). These observations show that exposing neurons to low concentrations of glucose for 24 h resulted in limited neuronal loss regardless of whether cells were initially cultured in either 6 or 25 mM glucose-NBM. Thus, because 6 mM glucose represents a more physiological concentration a number of the studies that follow were performed after neurons were exposed to 6 mM glucose.

NBM vs Locke’s medium

NBM is a complex mixture of organic molecules that have been shown to provide alternative energy sources in the absence of glucose (Honegger et al. 2002). Thus, to examine the influence of hypoglycemia in the absence of other energy sources, we next assessed cell viability using Locke’s solution, in which glucose is the only energy source (see Methods).

As above, neurons were cultured in 25 mM glucose-NBM for 12 days. Cultures were then continued in 25 mM glucose-NBM, or in NBM containing different concentrations of glucose for 24 h. In parallel, studies were performed in which neurons were treated with decreasing glucose
Figure 1 Cell viability in NBM vs Locke’s solution. After 7 days in 25 mM glucose, neurons were incubated in either 25 or 6 mM glucose for 5 days and then exposed to decreasing amounts of glucose for 24 h. (A) FDA labeling of neurons maintained in 25 mM glucose (black bar) and then exposed to reductions in glucose. (B) FDA labeling of neurons maintained in 6 mM glucose (black bar) and then exposed to reductions in glucose. (C) FDA labeling of neurons maintained at 25 mM glucose (black bar) and exposed to decreasing glucose concentrations for 24 h in either NBM (white bars) or Locke’s solution (gray bars). (D) Photomicrographs of FDA-labeled cells in cultures exposed for 24 h to 25, 6, 0.75 or 0 mM glucose-NBM (1–4), or 0 mM glucose-Locke’s solution (5). Scale in D5 is 50 µm. In (A–C), statistical differences determined by ANOVA using a Bonferroni post-test comparison of means. Data represent means±SE of four duplicate studies.
concentrations in Locke’s solution for 24 h, after which FDA staining was performed and cell viability assessed.

Similarly to that observed above, reducing glucose concentration in NBM (white bars Fig. 1C), decreased the number of remaining live cells to 84% through to 48% of control values (25 mM control = 100% viability, indicated by black bar; Fig. 1C). However, when glucose concentrations were lowered in the same manner in Locke’s solution (gray bars, Fig. 1C), the number of remaining live cells declined to 42% through to 15% of that seen in control wells (Fig. 1C). These observations show that hypoglycemia-induced neuronal death is more pronounced in Locke’s solution than in NBM.

Hypoglycemia induces increased adenosine levels

We next assessed whether hypoglycemia influences adenosine released from neurons. Cells were kept in 25 mM glucose-NBM for 7 days and then exposed to 0.75 mM glucose-Locke’s solution for 0, 4, 8 and 24 h. We chose 0.75 mM glucose-Locke’s solution because greater cell death was observed in Locke’s solution at this glucose concentration compared with 0.75 mM glucose-NBM.

We found that in 25 mM glucose-NBM, the adenosine concentration was $1.85 \pm 0.12 \text{nM}$ (Fig. 2). Immediately after switching from 25 mM glucose-NBM to 0.75 mM glucose-Locke’s solution (0 h) adenosine levels were determined to be $0.40 \pm 0.07 \text{nM}$. This decrease was most likely due to a washout effect following the change in medium from NBM to Locke’s solution. After 4 h in 0.75 mM glucose-Locke’s solution, adenosine levels increased to $4.35 \pm 0.36 \text{nM}$ and continued to increase by 8 h to $5.75 \pm 0.41 \text{nM}$, reflecting a 10- to 14-fold increase compared with the 0 h time point (Fig. 2). At 24 h, the adenosine concentration had decreased to $3.13 \pm 0.41 \text{nM}$, perhaps reflecting the greater loss of cells at this time point (Fig. 2). These data show that hypoglycemia can trigger increased adenosine release from neurons.

Changes in calcium signaling after acute (15 min) hypoglycemia

After observing that reduction in glucose concentration results in adenosine release and neuronal death, we next examined if reductions in glucose concentration alter $[\text{Ca}^{2+}]_i$. Other studies have observed changes in absolute $[\text{Ca}^{2+}]_i$, following hypoglycemia but whether neurons were still functional in these studies was unclear (Mattson et al. 1993, Silver et al. 1997). Depolarizing stimuli can evoke increases in $[\text{Ca}^{2+}]_i$, indicating normal cell functioning (Franklin & Johnson 1992). Thus, we examined changes in $r[\text{Ca}^{2+}]_i$, following varying degrees of hypoglycemia, under depolarizing conditions, as previously described (Turner et al. 2002a).

We first examined acute changes in $r[\text{Ca}^{2+}]_i$, 15 min after the onset of hypoglycemia. Neurons were kept in 25 mM glucose-NBM for 12 days and parallel cultures were then exposed to 6, 0.75 or 0 mM glucose for 15 min. After 15 min, changes in Fluo-3 intensity were recorded following depolarization with 50 mM KCl. Because of the need for viable neurons, NBM was used rather than Locke’s solution, as the latter medium is associated with greater neuronal toxicity when glucose concentrations are reduced.

For each treatment, all cells in the field studied were responsive to KCl addition, and 15 randomly chosen cells from each field were sampled for changes in Fluo-3 over time. In 25 mM glucose, cells responded to KCl addition with a sharp rise in Fluo-3 intensity that was followed by a steady
plateau (Fig. 3A). The maximum at plateau (max) was 281% of baseline intensity and the time to reach 50% of maximum (T_{50}) was 19.7 s. In 6 mM glucose, the maximum was slightly lower (252% of baseline intensity; Fig. 3A) but the response time was essentially unchanged ($T_{50}=20.2$ s; Fig. 2A). In 0.75 mM glucose, there was a substantial reduction in responsiveness following KCl stimulation (max=151% of baseline intensity, $T_{50}=33$ s; Fig. 3A). In 0 mM glucose, cells responded poorly following KCl addition (max=143% of baseline intensity; $T_{50}=50.7$ s; Fig. 3A). These data show that acute hypoglycemia results in substantial reductions in depolarization-induced changes in $r\left[Ca^{2+}\right]_i$.

Changes in calcium signaling after hypoglycemia for 24 h

After examining changes in $r\left[Ca^{2+}\right]_i$ 15 min after hypoglycemia, we next examined if lowering glucose levels for 24 h influenced KCl-evoked changes in $r\left[Ca^{2+}\right]_i$. Neurons were kept in 25 mM glucose-NBM for 12 days. Cells were then loaded with Fluo-3-AM, media were changed to 0–25 mM glucose-Hibernate E/B27 media, and changes in Fluo-3 intensity monitored over time following KCl-evoked depolarization. Sigmoidal plots were derived from normalized data of 15 cells per field studied. (A) KCl-evoked changes in Fluo-3 intensity in cells exposed to 25, 6, 0.75 or 0 mM glucose for 15 min. (B) KCl-evoked changes in Fluo-3 intensity in cells exposed to 25, 6, 0.75 or 0 mM glucose for 24 h. Arrowheads in (A) and (B) show the time at which KCl was added. Beneath curves in (A) and (B), maximum at plateau (Max) (expressed as percent of baseline intensity) and T_{50} (time to reach 50% of maximum) are shown for comparison (expressed as the means±S.E.). In (A) and (B), statistical differences determined by ANOVA, using a Bonferroni post-test comparison of means.

Figure 3 Hypoglycemia induces acute and chronic changes in relative $[Ca^{2+}]_i$. Neurons were maintained in 25 mM glucose-NBM for 12 days. Cells were then loaded with Fluo-3-AM, media were changed to 0–25 mM glucose-Hibernate E/B27 media, and changes in Fluo-3 intensity monitored over time following KCl-evoked depolarization. Sigmoidal plots were derived from normalized data of 15 cells per field studied. (A) KCl-evoked changes in Fluo-3 intensity in cells exposed to 25, 6, 0.75 or 0 mM glucose for 15 min. (B) KCl-evoked changes in Fluo-3 intensity in cells exposed to 25, 6, 0.75 or 0 mM glucose for 24 h. Arrowheads in (A) and (B) show the time at which KCl was added. Beneath curves in (A) and (B), maximum at plateau (Max) (expressed as percent of baseline intensity) and T_{50} (time to reach 50% of maximum) are shown for comparison (expressed as the means±S.E.). In (A) and (B), statistical differences determined by ANOVA, using a Bonferroni post-test comparison of means.
response to KCl depolarization was observed, with a much larger maximum at the plateau (403% of baseline intensity; Fig. 3B) and a steeper rise in Fluo-3 intensity ($T_{50}=11.6$ s; Fig. 3B). These data show that long-term exposure to hypoglycemia is associated with an exaggerated response to depolarizing stimuli.

[Ca$^{2+}$]$_i$ determines the degree of hypoglycemic injury

Having observed reduced cell viability and altered depolarization-induced changes in [Ca$^{2+}$]$_i$, following hypoglycemia, we next assessed if modifying [Ca$^{2+}$]$_i$ following hypoglycemia influences neuronal survival. Thus, we examined neuronal injury under conditions of hypoglycemia while increasing or decreasing [Ca$^{2+}$]$_i$.

Cells were initially cultured in 25 mM glucose-NBM for 7 days and the medium was changed to 6 mM glucose-NBM for a further 5 days. Cells were then maintained in either 6 or 0.75 mM glucose-NBM for a further 24 h.

To reduce [Ca$^{2+}$]$_i$, some cells were treated with the intracellular calcium chelator BAPTA-AM (2 µg/ml) while being exposed to 0.75 mM glucose-NBM. BAPTA-AM can readily penetrate the cell membrane but is cleaved at the AM group, trapping BAPTA inside the cell. At the concentration and conditions used, BAPTA markedly inhibits KCl-stimulated intracellular Ca$^{2+}$ accumulation (Collatz et al. 1997, Kress & Guenther 1999, Nonner et al. 2000). To test for time-dependency of effects, we added BAPTA-AM at 5 min or at 8 h after hypoglycemia, and stained neurons with FDA 24 h after exposure to low glucose.

In 6 mM glucose-NBM, BAPTA-AM (horizontal striped bar, Fig. 4) reduced cell viability to 55% of the control wells (indicated by black bar; Fig. 4). To study the effects of profound hypoglycemia, we exposed neurons to the lowest glucose concentration used in the studies above (0.75 mM). Changing from 6 to 0.75 mM glucose reduced cell viability to 47% of the control wells (white bar, Fig. 4). When neurons were treated with 0.75 mM glucose plus BAPTA-AM, cell viability was reduced to 17% of the control wells if BAPTA-AM was added in the first 5 min (first light gray bar, Fig. 4). In contrast, if BAPTA-AM was added at 8 h following initial hypoglycemic insult, cell viability was 73% of the control wells (second light gray bar, Fig. 4). Importantly, cell viability in cultures exposed to 0.75 mM glucose-NBM plus BAPTA-AM (at 5 min or 8 h) was significantly different from that found in 0.75 mM glucose-NBM without BAPTA-AM ($P<0.001$, ANOVA).

In a parallel set of cell cultures, we added the Ca$^{2+}$ ionophore ionomycin to neurons exposed to 0.75 mM glucose. Ionomycin was used at 0.1 µM for 5 min, after which media were exchanged for ionomycin-free media. Used in this manner, ionomycin displays little or no neuronal toxicity (Turner et al. 2002a). To test for any time-dependency of effects, we added ionomycin at 5 min or at 8 h after hypoglycemia and stained neurons with FDA 24 h after exposure to low glucose.

By itself, ionomycin did not influence cell viability (vertical striped bar, Fig. 4) compared with the control wells (indicated by black bar; Fig. 4).
However, in the presence of 0.75 mM glucose-NBM, ionomycin increased cell viability to 65% of control wells if added in the first 5 min (first dark gray bar, Fig. 4) but severely decreased cell viability to 9% of control wells (second dark gray bar, Fig. 4) if added at 8 h after initial hypoglycemic insult (Fig. 4). Importantly, cell viability of cultures exposed to 0.75 mM glucose-NBM plus ionomycin (5 min or 8 h) were significantly different from that found for 0.75 mM glucose-NBM without ionomycin ($P < 0.001$, ANOVA).

These results are consistent with the hypothesis that changes in $[\text{Ca}^{2+}]_i$ may play a role in hypoglycemia-induced cell death. In addition, the time at which changes in $[\text{Ca}^{2+}]_i$ are initiated following glucose deprivation appears to influence the degree of hypoglycemia-induced cell death.

A$_1$AR antagonism reverses hypoglycemic cell death

Because A$_1$AR activation can result in injury in isolated neurons (Turner et al. 2002a), and we have shown here that hypoglycemia can induce adenosine release from neurons, we next assessed if A$_1$ARs mediate the observed effects of hypoglycemia. To examine this issue, we first exposed neurons to hypoglycemia in the absence or presence of the selective A$_1$AR antagonist, DPCPX (Lohse et al. 1987). We compared NBM with Locke’s solution to determine if the effect of blocking A$_1$ARs was influenced by the presence or absence of alternative energy sources during hypoglycemia.

Neurons were kept in 25 mM glucose-NBM for 7 days and then in 6 mM glucose-NBM for a further 5 days. Neurons either remained in 6 mM glucose-NBM or in medium were this was replaced with 0.75 mM glucose-NBM for 24 h. A parallel set of neurons was exposed to 0.75 mM glucose-Locke’s solution for 24 h. Neurons were exposed to low glucose in the absence or presence of 100 nM DPCPX, which is a concentration that blocks A$_1$ARs (Fredholm et al. 1994, Turner et al. 2002a).

After 24 h, neurons were labeled with FDA and cell viability assessed.

In NBM, cell viability in 0.75 mM glucose (first white bar) was 45% of that found in control wells (indicated by black bar; Fig. 5A). However, cell viability in 0.75 mM glucose plus DPCPX (second white bar) was 71% of that seen in control wells (Fig. 5A). In Locke’s solution, cell viability in 0.75 mM glucose (first gray bar) was 15% of that seen in control wells (Fig. 5A). However, in 0.75 mM glucose plus DPCPX (second gray bar), cell viability was 41% of that observed in control wells (Fig. 5A).

Figure 5 Reversal of hypoglycemic damage by DPCPX. (A) Cells were maintained in 25 and then 6 mM glucose-NBM (7 and 5 days respectively). Cells were kept in 6 mM glucose-NBM (black bar) or the medium was changed to 0.75 mM glucose in NBM (white bars) or in Locke’s solution (light gray bars), in the absence or presence of 100 nM DPCPX. After 24 h, cell viability was assessed by FDA staining. In a parallel experiment, cells were exposed to 0.75 mM glucose-NBM in the absence or presence of 100 nM DPCPX. After 24 h, cell viability was assessed by FDA staining. In a parallel experiment, cells were exposed to 0.75 mM glucose-NBM in the absence or presence of 100 nM DPCPX. After 24 h, cell viability was assessed by FDA staining. Differences assessed by ANOVA, using a Bonferroni post-test comparison of the means. Data shown are means±S.E.
We also examined neuronal viability when DPCPX was added to neurons 8 h after initial exposure to 0.75 mM glucose-NBM. In neurons exposed to 0.75 mM glucose-NBM in the absence of DPCPX (third white bar) we observed a decline in cell viability to 51%, compared with the control wells (Fig. 5A). When neurons were exposed to 0.75 mM glucose-NBM in the presence of DPCPX (dark gray bar), cell viability was 60% compared with controls. However, this was not significantly different from that seen in 0.75 mM glucose-NBM without DPCPX (Fig. 4A).

Thus, DPCPX can increase neuronal survival following hypoglycemia in NBM or Locke’s solution. These data also show that early addition of DPCPX is more effective in reducing hypoglycemic injury than later addition of the antagonist.

Next, to confirm if the ability of DPCPX effects were specific to A1AR antagonism, we examined the influence of the non-xanthine A1AR antagonists CGS 15943 and CPMA on hypoglycemic injury (Ukena et al. 1987, Merkel et al. 1993). Neurons were kept in 25 mM followed by 6 mM glucose-NBM, as described above. Hypoglycemia was then induced by exposing neurons to 0.75 mM glucose-NBM or 0.75 mM glucose-Locke’s solution in the presence of absence of CGS 15943 or CPMA (0.1, 1 and 10 µM, for each drug). After 24 h, neurons were stained with FDA.

Both CGS 15943 and CPMA reduced hypoglycemia-induced cell death in a concentration-dependent manner (Fig. 5B–E). Following exposure to 0.75 mM glucose-NBM, both drugs were able to increase FDA-positive neurons to numbers observed at 6 mM glucose-NBM (Fig. 5B and C). When neurons were exposed to 0.75 mM glucose-Locke’s solution, CGS 15943 and CPMA also reversed cell death (Fig. 5D and E), but not to the same degree observed when neurons were exposed to 0.75 mM glucose-NBM. These data confirm that A1AR antagonism can protect neurons from hypoglycemia-induced injury.

A1AR antagonism reverses hypoglycemia-induced changes in [Ca2+]i

Because A1AR activation decreases [Ca2+]i (Mynlieff & Beam 1994, Wu & Saggau 1994), and the above results suggest a role for A1ARs in mediating the early events of hypoglycemic neuronal injury, we next assessed if the changes in [Ca2+]i following acute hypoglycemia involve A1AR activation. Changes in KCl-evoked Fluo-3 intensity were initially assessed in 25 mM glucose. Neurons were then exposed to 0.75 mM glucose-NBM for 15 min, in the absence or presence of 100 nM DPCPX, and changes in KCl-evoked Fluo-3 intensity were monitored.

For each treatment, all cells in the field studied were responsive to KCl addition, and 15 randomly chosen cells from each field were sampled for changes in Fluo-3 over time. Following KCl addition, changes in [Ca2+]i in neurons kept in 25 mM glucose-NBM increased over time (max=318% of baseline intensity; Fig. 6A). In 0.75 mM glucose-NBM, neurons responded with much less intensity (max=179% baseline intensity). However, in the presence of 0.75 mM glucose-NBM plus DPCPX, cell responsiveness had partially recovered (max=237% of baseline intensity; Fig. 6A). Suggesting that DPCPX preserves intrinsic mechanisms that trigger changes in [Ca2+]i, the dynamic response of the neurons in 0.75 mM glucose plus DPCPX (T50=10.7 s) was closer to that observed in 25 mM glucose (T50=13.5 s). In contrast, neurons exposed to 0.75 mM glucose in the absence of DPCPX were much more sluggish in their response time (T50=30.1 s). These data show that A1ARs may play a role in mediating hypoglycemic changes in [Ca2+]i.

A1AR antagonism, hypoglycemic cell death and reduced [Ca2+]i

Having demonstrated that the combination of reduced [Ca2+]i and hypoglycemia was more injurious to neurons than hypoglycemia alone, we next tested the involvement of A1ARs in this combined toxicity. Neurons were exposed to 0.75 mM glucose-NBM plus BAPTA-AM in the absence or presence of 100 nM DPCPX. Whereas 0.75 mM glucose plus BAPTA-AM (2 µg/ml) reduced cell viability to 20% of the control wells (indicated by black bar; Fig. 6B), in the presence of DPCPX, 0.75 mM glucose-NBM plus BAPTA-AM reduced cell viability to 54% of the control wells (Fig. 6B). These studies suggest that A1AR activation may mediate or enhance the neurotoxic effect of hypoglycemia by altering [Ca2+]i, a finding consistent with previously reported effects of A1AR activation (Turner et al. 2002a).
Caspase-3 activity

Following glucose deprivation, changes in \([\text{Ca}^{2+}]_i\) are known to activate mediators of programmed cell death (Kluck et al. 1994, Berridge et al. 2000, Zhu et al. 2000, Han et al. 2001). To examine potential mechanisms of cell injury we first exposed neurons to the calcium chelator, BAPTA-AM (using a concentration of 2 µg/ml), which is known to induce apoptosis (Han et al. 2001) and monitored changes in the activity of the pro-apoptotic enzyme, caspase-3 (Yuan et al. 1993, Moran et al. 1999, Nicholson 1999). At various times after, neurons were incubated with the fluorescein-tagged, irreversible inhibitor of caspase-3, FAM-DEVD-FMK for 1 h, at 37°C/5% CO₂ (CaspaTag Assay Kit; Serological) and the number of fluorescent neurons counted. An increase in caspase-3 activity over time was clearly evident, peaking at 4 h and declining thereafter (Fig. 7A).

Next, neurons were kept in 25 mM glucose-NBM for 7 days followed by 6 mM glucose-NBM for a further 5 days. Neurons were then exposed to 0·75 mM glucose in NBM or in Locke’s solution, in the absence or presence of DPCPX (100 nM). After 4 h, neurons were then assayed for caspase-3 activity. In both 0·75 mM glucose-NBM and 0·75 mM glucose-Locke’s solution, caspase-3 activity was measured. Quadruplicate wells were used for each treatment and data expressed as means±S.E. Differences were assessed by ANOVA, using a Bonferroni post-test comparison of means.

Figure 6 Hypoglycemia-induced changes in \([\text{Ca}^{2+}]_i\): protection by A₁AR antagonism. (A) KCl-evoked changes in Fluo-3 intensity monitored over time (every 3·2 s, for 60 s) in neurons exposed to 25 mM glucose, or 15 min of hypoglycemia (0·75 mM glucose) in the absence or presence of 100 nM DPCPX. Sigmoidal plots were derived from normalized data of 15 cells per field studied. Maximum at plateau (Max) (percent baseline intensity) and \(T_{50}\) (time to reach 50% of maximum) values are also shown (means±S.E.). Arrowhead shows the time when KCl added. (B) After exposure to 25 followed by 6 mM glucose-NBM (7 and 5 days respectively), cells were then exposed to 0·75 mM glucose-NBM plus BAPTA-AM (2 µg/ml) in the absence or presence of 100 nM DPCPX for 24 h. Cell viability was then assessed by FDA staining. Statistical differences were determined by ANOVA using a Bonferroni post-test comparison of means. Data shown are means±S.E. of four duplicate studies.

Figure 7 Hypoglycemic injury induces caspase-3 activity; protection by A₁AR antagonism. Neurons were cultured in 25 followed by 6 mM glucose-NBM (7 and 5 days respectively) and then exposed to: (A) BAPTA-AM (10 µg/ml) for various times, after which caspase-3 activity was estimated, or (B) 0·75 mM glucose (in NBM or Locke’s solution) for 4 h in the absence or presence of DPCPX (100 nM), after which caspase-3 activity was measured. Quadruplicate wells were used for each treatment and data expressed as means±S.E. Differences were assessed by ANOVA, using a Bonferroni post-test comparison of means.
activity was much greater than that found for 6 mM glucose-NBM. However, when neurons were exposed to 0.75 mM glucose-NBM or 0.75 mM glucose-Locke’s solution in the presence of DPCPX, caspase-3 activity was significantly less than that found in the absence of DPCPX (Fig. 7B).

Collectively these data demonstrate that changes in $[\text{Ca}^{2+}]_i$ can promote programmed cell death in neurons. We also observed that hypoglycemia-induced apoptosis can be reversed by blocking A_1ARs.

Discussion

Our observations suggest that neuronal death from hypoglycemia is influenced by the availability of alternative energy sources and by changes in $[\text{Ca}^{2+}]_i$. In addition, hypoglycemia-induced neuronal injury appears to involve both adenosine release and activation of A_1ARs.

In vitro, energy sources for neurons come directly from the medium in which the cells are cultured. NBM is frequently used to culture neurons for extended periods and contains a complex mixture of organic and inorganic substances (Brewer et al. 1993). Substances found in NBM have been shown to support neuronal viability in the absence of glucose (Cox & Bachelard 1988, Izumi et al. 1994, Honegger et al. 2002) and neurons exposed to hypoglycemia *in vivo* appear able to use alternative sources of energy to glucose (Cooper & Plum 1987, Hertz et al. 2000). In support of this, we found that lowering glucose in Locke’s solution, in which glucose is the sole source of energy, produced a greater loss in cell viability than that observed in NBM. However, even though our *in vitro* observations are consistent with the findings of others, we cannot rule out the possibility that the absence of trophic substances in Locke’s solution could have contributed to cell death (Mattson et al. 1993).

Although hypoglycemia can significantly curtail neuronal excitability (Mobbs et al. 2001), it is probably uncommon for *in vivo* glucose values to fall to 0 mM even in pathological states. In addition, following mild hypoglycemia, neurons are still functional and can readily depolarize (Mobbs et al. 2001). Neuronal depolarization is associated with changes in $[\text{Ca}^{2+}]_i$, and several studies show altered absolute $[\text{Ca}^{2+}]_i$ following hypoglycemia (Cheng & Mattson 1991, Silver et al. 1997). However, although changes in absolute $[\text{Ca}^{2+}]_i$ have been linked to altered neuronal viability, it is unclear if depolarization-induced increases in $[\text{Ca}^{2+}]_i$ are affected by glucose deprivation.

To address the effects of hypoglycemia on neuronal function, we studied real-time, dynamic changes in relative $[\text{Ca}^{2+}]_i$ using Fluo-3-loaded neurons, following hypoglycemia under depolarizing conditions to allow us to assess rapid changes in $[\text{Ca}^{2+}]_i$.

Neurons exposed to 0 or 0.75 mM glucose for 15 min displayed sluggish and reduced Flu-3 responses following KCl-evoked depolarization, compared with 25 mM glucose. In contrast, after 24 h of hypoglycemia, KCl-evoked Flu-3 responses in cells exposed to 0 or 0.75 mM glucose were more robust than that found in 25 mM glucose. Whereas we studied real-time, dynamic changes in $[\text{Ca}^{2+}]_i$, our observations are very consistent with studies that measured absolute $[\text{Ca}^{2+}]_i$ at fixed intervals, using Fura-2 (Cheng et al. 1993, Mattson et al. 1993).

In the first 15 min after hypoglycemia, we show that reducing $[\text{Ca}^{2+}]_i$ enhances, whereas increasing $[\text{Ca}^{2+}]_i$ reduces, hypoglycemic neuronal death. At 8 h after initial hypoglycemia, we show that lowering $[\text{Ca}^{2+}]_i$ reduces, whereas increasing $[\text{Ca}^{2+}]_i$ enhances, hypoglycemic neuronal death. These observations are in general agreement with studies by others (Mattson et al. 1993) and suggest that cell death is a function of $[\text{Ca}^{2+}]_i$, relative to an optimal concentration, in agreement with previous findings (Turner et al. 2002a) and those of other workers (Johnson et al. 1992, Zipfel et al. 2000).

Reductions in brain glucose levels trigger a release of excitotoxins (Wieloch 1985, Butcher et al. 1987, McGowan et al. 2002) and can also induce the release of adenosine (Fowler 1993, Zhu & Krnjevic 1993, Calabresi et al. 1997). In our studies we also observed increased adenosine concentrations following hypoglycemia. We have previously shown that direct activation of A_1ARs with the selective agonist N^6-cyclopentyladenosine can promote neuronal death both *in vitro* and *in vivo* (Turner et al. 2002b). It has been suggested that adenosine can exert toxic effects that are not mediated by cell surface receptors (Koshiha et al. 2002). However, because we observed protection from hypoglycemia-induced neuronal injury with DPCPX, CGS 15943 or CPMA, it is most likely...
that adenosine, acting via A1ARs, mediated mediates cell injury.

It is possible that other adenosine receptors may be activated by the observed increases in adenosine following hypoglycemia. We obtained isolated neurons from embryonic rat cerebral cortex where A1ARs are expressed at high levels (Fastbom et al. 1987, Reppert et al. 1991, Rivkees et al. 1995, 2001, Dunwiddie & Masino 2001). Expression of A2AARs is generally restricted to the striatum and is considerably less than A1AR expression in other regions of the brain (Fink et al. 1992). In contrast, evidence of A2B or A2AR expression in the brain remains unconvincing (Dixon et al. 1996, Rivkees et al. 2000). Thus, the reversal of hypoglycemia-induced neuronal death by the three different adenosine antagonists used in this study most likely involves blockade of A1ARs.

The observation that A1AR activation promotes neuronal injury appears to be inconsistent with contemporary opinion indicating a neuroprotective role for adenosine in the mature brain (von Lubitz 1999, Dunwiddie & Masino 2001). However, recent evidence indicates that in contrast to that which occurs in mature brains, A1AR activation during early postnatal development actually leads to neuronal injury (Turner et al. 2002a,b, 2003). Similarly, blockade of N-methyl D-aspartate receptor promotes neuroprotection in adult brains, but induces neuronal injury in neonatal brains (Ikonomidou et al. 1999). Thus, influences of neurotransmitter action of neuronal viability depend on the neurochemical and age.

Because most studies involving hypoglycemia use glucose deprivation in combination with other insults (Vannucci & Yager 1992, Yager et al. 1992, Ouanonou et al. 1999, Breder et al. 2000, Tekkok et al. 2002), it is difficult to determine direct and indirect effects. In contrast, the data we present here represent effects of hypoglycemia only, using a single population of neurons, wherein direct action of glucose deprivation can more readily be observed.

Hypoglycemia is thought to display a unique distribution of neuronal damage in vivo compared with other types of brain injury (hypoxia, ischemia, trauma), suggesting mechanistic differences (Auer 1986). We present data that suggest that glucose deprivation promotes neuronal injury that is mediated by A1ARs. In contrast, direct A1AR antagonism, using 8-cyclopentyltheophylline, has been shown to increase neuronal death following exposure of mixed neuron–glia cultures to combined hypoxia/hypoglycemia (Lobner & Choi 1994). However, in the same study, the adenosine uptake inhibitor, dipyridamole, also enhanced hypoxia/hypoglycemia-induced neuronal death. In a related study, release of adenosine in brain slices has been found to promote neuronal death following combined hypoxia/hypoglycemia (Barth et al. 1997). Thus, when considering the influence of adenosine release or A1AR antagonism on neuronal injury, the outcome may be inherently dependent on mechanistic differences between hypoglycemia alone or combined hypoglycemia plus hypoxia.

We also observed that A1AR antagonism was only effective if added to neurons at the same time that hypoglycemia was initiated and was unable to protect neurons if added to cultures 8 h after lowering glucose. Supporting a role for early activation of A1ARs, the decline in r[Ca2+], we observed following acute hypoglycemia (first 15 min) was reversed by DPCPX. These data indicate factors other than A1AR antagonism may be involved in mediating hypoglycemic injury, particularly at later times (Cheng et al. 1993, Mattson et al. 1993).

We observed that caspase-3 is activated following altered [Ca2+]i or hypoglycemia, in agreement with other workers (Cheng et al. 1993, Moran et al. 1999, Ouyang et al. 2000, Han et al. 2001). Caspase-3 is an enzyme thought to be key to a cell’s final commitment to programmed cell death (Yuan et al. 1993, Nicholson 1999). Importantly, we also observed that hypoglycemia-induced increases in caspase-3 activity were reversed by the A1AR antagonist, DPCPX. These data indicate that hypoglycemia induces programmed cell death by altering [Ca2+]i and these events may be triggered by activation of A1ARs.

Earlier work suggested that activation of A1ARs triggers apoptotic death in neonatal brains and isolated neurons by a mechanism that involves thapsigargin-sensitive decreases in [Ca2+]i (Turner et al. 2002a), indicating that A1AR-mediated changes in [Ca2+]i are probably due to the altered release of calcium from endoplasmic stores (Thastrup et al. 1990). Yet, using electrophysiological approaches it will be important to identify that cellular basis of changing calcium dynamics to assess if this is indeed the case and to examine the
cellular current and channels that are influenced by Λ_1AR activation and hypoglycemia.

In conclusion, we find that alterations in [Ca$^{2+}$], play a role in hypoglycemia-induced neuronal injury. We also find that when neurons are exposed to low glucose concentrations, there are both early and long-term alterations in relative [Ca$^{2+}$]. Our results also suggest that release of adenosine and activation of Λ_1ARs plays a prominent role in mediating hypoglycemia-induced neuronal injury.

Acknowledgements

This work was funded by NIH grant RO1-NS33439 to S A R and HL70952 to M R B, the Donaghe Medical Research Foundation and the Fannie F Ripple Foundation Cell Imaging Facility.

References

Breder J, Sabelhaus CF, Opitz T, Reymann KG & Schroder UH 2000 Inhibition of different pathways influencing Na(+)+ homeostasis protects organotypic hippocampal slice cultures from hypoxic/hypoglycemic injury. Neuropharmacology 39 1779–1787.

Fastbom J, Pazzos A & Palacios JM 1987 The distribution of adenosine A1 receptors and 5'-nucleotidase in the brain of some commonly used experimental animals. Neuroscience 22 813–826.

Fowler JC 1993 Glucose deprivation results in a lactate preventable increase in adenosine and depression of synaptic transmission in rat hippocampal slices. Journal of Neurochemistry 60 572–576.

Haas HL & Selbach O 2000 Functions of neuronal adenosine receptors. Naunyn-Schmiedeberg’s Archives of Pharmacology 362 375–381.

Received in final form 20 September 2003

Accepted 29 October 2003