Estrogen receptor-related receptors: orphan receptors desperately seeking a ligand

B Horard and J-M Vanacker
Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR 5161, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France

Requests for offprints should be addressed to J-M Vanacker; Email: jmvanack@ens-lyon.fr

Abstract

The nuclear receptor family comprises ligand-dependent and orphan receptors. To the latter group belong the estrogen receptor-related receptors (ERRs) for which conflicting results have been published concerning the nature (constitutive or liganded) of their transcriptional activities. ERRs interfere in various ways, positively and negatively, with estrogen signaling. Moreover recent data analyzing ERR expression in human breast tumors have proposed ERRα and ERRγ as prognostic markers of these cancers. The identification of modulators (positive or negative) of ERR activities would therefore be highly useful in our understanding of estrogen-related pathologies. The purpose of this review is to summarize our knowledge of the nature of ERR activities and progresses in identifying synthetic ERR modulators.

Journal of Molecular Endocrinology (2003) 31, 349–357

On nuclear receptors (NRs) in general and orphan receptors in particular

According to a commonly used definition, NRs are described as ligand-dependent transcription factors (Laudet & Gronemeyer 2002). With very few exceptions, all NR proteins share a similar organization in modular domains, two of which are remarkably conserved between members of the family and across evolution. These are (i) the DNA-binding domain (DBD), localized in the middle of the primary structure and which mediates specific interaction with the target DNA sequences and (ii) the ligand-binding domain (LBD), in the C-terminal part, which is responsible for ligand recognition, dimerization, interaction with coactivators and ligand-dependent transcriptional activation. Three-dimensional (3D) structure determination has demonstrated that ligand entry into the binding pocket of the LBD evokes a conformational change allowing the recruitment of coactivator proteins that directly or indirectly modify chromatin and induce target gene expression. Several coactivators have been described that interact with NRs, the most common being the three widely expressed p160 family members, SRC-1, GRIP1/TIF/SRC-2 and pCIP/AIB1/SRC-3 (reviewed in McKenna et al. 1999).

A ligand-independent transactivation domain can be found in the non-conserved N-terminal part (A/B domain) of certain, but not all, NRs, such as the estrogen receptor (ER) α (Laudet & Gronemeyer 2002).

Receptors for classic ligands such as steroid hormones, thyroid hormones, retinoic acids or vitamin D were identified on the basis of their capacity to transduce a previously known hormonal signal. Besides them, the NR superfamily also comprises a number of so-called orphan receptors that were isolated on the basis of their sequence similarity and identical domain organization to other NRs (Giguère 1999). Since no ligand has been identified that regulates them, the orphan receptors do not fulfill the above-mentioned definition. One of the remaining questions concerning orphan receptors is how their transcriptional activities are regulated. In other words, do they respond to a natural ligand which remains...
to be identified, or do they act in a ligand-independent manner?

This question has been at least partially answered for a number of orphan receptors. For instance, certain oxysterols (catabolites of cholesterol) have been shown to act as ligands for LXRs, and to modulate (positively in rodent, negatively and indirectly in humans) the expression of an enzyme (Cyp7α) that catalyzes their degradation, thereby acting in a feed-forward mechanism (reviewed in Repa & Mangelsdorf 2000, Goodwin et al. 2003). The LXRs can therefore be considered as ligand-dependent receptors. On the contrary 3D structure determination of Rev-erbα has demonstrated that the putative ligand-binding pocket was actually packed with amino acid side-chains rendering the entry of a ligand very unlikely (Renaud et al. 2000). Rev-erbα, which is in fact a transcriptional repressor, is therefore considered as a non-liganded, constitutively acting receptor. However, it should be remembered that a constitutive activity does not exclude the existence of a ligand, as exemplified by CAR. Indeed, the activity of this receptor, originally described as constitutive, can be down-regulated by androstane metabolites (Forman et al. 1998), but also further activated by phenobarbital (Tzameli et al. 2000).

In spite of the examples quoted above, there are some orphan receptors for which the existence of a ligand is still an open question. Although they were the first orphan receptors to be identified, this is the case for the estrogen-receptor related receptors (ERRs), to which this review is dedicated. Furthermore, even if a receptor is recognized as constitutively active, it could still be (at least theoretically) possible to modulate its activity using a synthetic agonist or antagonist. In this respect, recent data have identified synthetic antagonists of the ERRs. Given the wide variety of developmental, physiological and metabolic processes controlled by NRs, finding a way to modulate the activity of these transcription factors is an issue of considerable importance.

On ERRs

ERRα and β were isolated in 1988 by mean of a low-stringency screen with the DBD of ERα (Giguère et al. 1988). More recently, a third member of the subfamily (ERRγ) has been identified (Hong et al. 1999). ERRs are present throughout evolution, with a unique homologue existing in the invertebrates Drosophila, amphioxus and tunicates (Dehal et al. 2002, B Horard & J-M Vanacker, unpublished observations). In terms of sequence, ERRs are fairly similar to the ERs (Fig. 1), particularly in the DBD regions (over 60% sequence identity between human ERRα and ERα). The lower conservation level of the LBDs (less than 35%) is apparently consistent with the incapacity of ERRs to bind estradiol (E2) (Giguère et al. 1988, Yang et al. 1996). However, in *in silico* superimposition of the ligand-binding pocket of ERRα on that of ERα has revealed a greater level of local sequence identity, suggesting that structurally close ligands could be bound by both receptors (Chen et al. 2001).

In the past years, numerous interconnections between the ERRs and estrogen signaling have been documented, and these are thoroughly discussed in a recently published review (Giguère 2002) (see Fig. 2 for summary). For instance, ERRs and ERs share common transcriptional target genes, such as lactoferrin, osteopontin and pS2, on which they can either synergize or compete with one another (Yang et al. 1996, Vanacker et al. 1999a, Lu et al. 2001, Kraus et al. 2002). Furthermore, Yang et al. (1996) found that human ERRα interacts with human ERα at least in *in vitro* through protein–protein contacts. Moreover, the aromatase gene, encoding the enzyme catalyzing the conversion of androgens to estrogens, is a transcriptional target of ERRα (Yang et al. 1998). Altogether, these finding have raised the possibility that the ERRs (at least ERRα) might directly and indirectly modulate the estrogenic response.

Little is known about the *in vivo* functions of the ERRs. It has been proposed that ERRα plays a role in bone formation. Indeed this receptor is expressed in ossification zones of the mouse embryo (Bonnelye et al. 1997a) and up-regulates the expression of the osteopontin gene (Vanacker et al. 1998) coding for an extracellular matrix protein involved in bone remodeling. More recently, Bonnelye et al. (2001) have found that ERRα plays a role in *in vitro* osteoprogenitor cell proliferation and differentiation. Both ERRα and ERRγ are also highly expressed in muscle, heart and adipose tissues (Bonnelye et al. 1997b, Hong et al. 1999, Heard et al. 2000). In adipose tissues, ERRα has been suggested to participate in the control of...
energy expenditure through the regulation of the expression of the MCAD (medium-chain acyl dehydrogenase) gene (Sladek et al. 1997, Vega & Kelly 1997). In the central nervous system, both ERRα and ERRγ possess a complex pattern of expression (Bonnelye et al. 1997b, Hermans-Borgmeyer et al. 2000, Lorke et al. 2000) but no function has yet been attributed to the receptors. ERRβ is mainly expressed during early mouse development (Pettersson et al. 1996) where it is necessary for proper trophoblastic cell proliferation and differentiation as demonstrated by the placental defects observed in mice lacking ERRβ (Luo et al. 1997).

A natural ligand for ERRs?

ERRs bind as homodimers to at least two types of target DNA sequence, the estrogen response element (ERE: AGGTCAAnnTGACCT) and an extended half site originally characterized as SF1 (steroidogenic factor 1, another orphan NR) response element (SFRE: TCAAGGTCA) (Pettersson et al. 1996, Bonnelye et al. 1997a, Johnston et al. 1997, Hong et al. 1999, Vanacker et al. 1999b, Hentschke et al. 2002a). Transcriptional activation through each of these sites occurs in an apparent ligand-independent manner as no external compound needs to be added to the culture medium. However, at least in the case of ERRα, these transcriptional activities are exerted in a cell-specific manner (Bonnelye et al. 1997b). This could indicate the requirement for a ligand present in the permissive cells and not in the restrictive ones. In support of this hypothesis, rat osteosarcoma ROS 17·2/8 cells cultured for 2 weeks with charcoal-treated serum (i.e. depleted of lipophilic compounds including hormones) do not support ERR-driven transcriptional activation in contrast to cells cultured in normal medium (Vanacker et al. 1999b). However, since the normal medium could promote ligand-unrelated events (e.g. activating phosphorylation cascades), identification of the active compound will be necessary in order to conclude that a ligand exists.
Alternatively the cell-dependent transcriptional activities of the ERRs could also reflect the presence or absence of a specific transcriptional coactivator. In this respect, ERRs have recently been shown to interact with members of the PGC-1 coactivator family (Hentschke et al. 2002b, Huss et al. 2002, Ichida et al. 2002, Schreiber et al. 2003), the expression of which is restricted to certain tissues and cells (Puigserver et al. 1998, reviewed in Knutti & Kralli 2001). Orphan ERRs can also be coactivated by the widely expressed members of the p160 family, at least in transient transfection assays (Hong et al. 1999, Xie et al. 1999, Zhang & Teng 2000). Whether this is also true in vivo remains to be investigated. In vitro experiments have demonstrated that interactions between ERR proteins and coactivators do not require the addition of any external compound. Since, in the case of classic receptors, this type of interaction is ligand-dependent, this suggests that ERRs are constitutive transcription factors. Nevertheless it cannot be formally excluded that a ligand is present and...
incorporated when the ERRs are translated in vitro or in bacteria. In this respect, the presence of certain fatty acids in the ligand-binding pocket of bacterially synthesized RAR (retinoic acid receptor) has been demonstrated by 3D structure determination (Bourguet et al. 2000). As a consequence, RAR is locked in an active conformation by the fatty acid moiety, which acts as a ligand. On the contrary, 3D structure determination of the LBD of ERRγ has shown that this domain spontaneously (i.e. without any fortuitous ligand) adopted an active conformation (Greschik et al. 2002). These experiments have revealed the existence of a hydrophobic pocket that is, to date, the smallest one identified in NRs (roughly half the volume of that of ERα). As a consequence, putative agonist ligands that could further stabilize ERRγ in an active conformation should be smaller that half the size of E2. However, the reduced size of the hydrophobic cavity does not seem to be the major determinant of ERRγ’s constitutive activity. Mutants displaying an enlarged putative ligand-binding pocket (i.e. in which protruding amino acid side-chains were removed) are still transcriptionally active in a ligand-independent manner. noteworthy, some of these mutants bind E2 but are not regulated by this hormone. Altogether this suggests that the overall LBD structure contributes to the spontaneous active conformation.

Crystallographic structures of ERRα and ERRβ have not been determined. The close sequence proximity of ERRβ and ERRγ suggests identical transcriptional properties for both receptors (i.e. ligand-independence). ERRα’s LBD is more divergent. Computer-assisted modeling has been performed for this receptor using its similarity to ERα (Chen et al. 2001). A striking difference is the presence of a phenylalanine side-chain across the binding pocket of ERRα where an alanine is found in ERα. The phenylalanine residue is thought to lock the LBD in an active conformation, since mutating this residue to an alanine results in a dominant negative mutant. This finding has also led to the conclusion that no steroid ligand (E2 in particular) could enter the binding pocket. However, ligands can adapt to the particular constraints of a given ligand-binding pocket. This is, for instance, the case for 9-cis retinoic acid that adopts different conformations when bound to RARγ or retinoid X receptor α (Egea et al. 2000). Furthermore, the above-mentioned phenylalanine residue is not conserved throughout evolution: the single amphioxus ERR and the zebrafish ERR versions bear an alanine at the equivalent position (P-L Bardet, B Horard & J-M Vanacker, unpublished observations). These receptors act as bona fide transcription activating factors and in spite of a greater proximity to ERα’s LBD, these ERR orthologs are still not activated by E2.

What could be the nature of an eventual endogenous agonist ligand of ERRs, in particular of ERRα, for which the question is more open that for ERRβ/γ? The expression of aromatase, which converts C19- to C18-steroids, is stimulated by ERRα. It could be that this up-regulation is necessary to clear the cells from an unwelcome compound by enhancing its degradation. By analogy with the rodent LXR, whose potentially toxic ligands promote their own degradation by activating the expression of a catabolic enzyme (reviewed in Repa & Mangelsdorf 2000), one can imagine that a substrate (or precursor thereof) of the aromatase could act as an ERRα ligand, a hypothesis which remains to be tested.

Synthetic ligands for ERRs

Reports have been published identifying synthetic modulators of the activities of the ERRs. Strikingly, all these compounds are more or less connected to estrogen signaling and repress ERRs’ transcriptional activities. They can be thus considered as antagonists (if ERRs possess natural ligands) or inverse agonists (if ERRs’ transcriptional activities are truly constitutive). Two organic pesticides, toxaphene and chlordane, are indeed endocrine disrupters that can display weak estrogen-like activities. Both these molecules have been shown to down-modulate the transcriptional activities of ERRα, probably by impairing its interactions with coactivators such as GRIP1 (Yang & Chen 1999).

Diethylstilbestrol (DES)

DES, a synthetic estrogen, was widely used between the 1940s and the 1970s to prevent spontaneous abortion in women. However, patients exposed in utero to high doses of DES have a range of gynecological troubles, including a higher incidence of vaginal cancers and malformations of the reproductive tract. These phenotypes closely
resemble those observed in null mouse models of some Wnt gene family members (Miller & Sassoon 1998, Parr & McMahon 1998). These data raised the proposition that disruption of developmental gene expression accounts for the DES syndrome. On this line, it was effectively shown that DES represses the expression of Wnt7a when administered perinatally (Miller et al. 1998). DES is a potent estrogen agonist, it can therefore be intuitively thought to act through ER and mimic the broad spectrum of E2 action. This view has recently been challenged by the finding that DES also represses the molecular activities of ERRs (Fig. 3), such as interaction with a coactivator fragment and reporter gene transactivation (Tremblay et al. 2001). Furthermore, administration of DES to pregnant mice partially phenocopies the absence of ERRβ, resulting in an absence of labyrinth and spongiotrophoblast layers and an increase in the giant cell layer. However, it should be noted that the DES concentration necessary to achieve a half-maximal inhibition of ERR activities (1–10 µM range, depending on the assay) is elevated compared with its ER-activating potential (nanomolar) (Kuiper et al. 1997). In another study, DES was independently confirmed to bind to all three ERRs but did not modify any of the receptors’ transcriptional effects in cell-based assays (Coward et al. 2001), which could reflect cell-specific differences in the action of this compound.

Figure 3 Contrasting effects of SERMs on ERs and ERRs. 4-OHT activates ERα in the uterus and bone, but acts as an estrogen antagonist in breast. 4-OHT also deactivates ERRγ. DES is a potent ER agonist and inhibits ERRβ’s transcriptional activities. RE: response element. References are given in the text.
Tamoxifen (TAM) and its derivative 4-OH tamoxifen (4-OHT)

Coward et al. (2001) also show that TAM and its derivative 4-OHT disrupt the interactions between ERRβ or ERRγ and a SRC-1-originating peptide in vitro. TAM is a selective ER modulator (SERM), and as such displays estrogenic or antiestrogenic actions according to the target tissue (see Cosman & Lindsay 1999, Lonard & Smith 2002 for reviews). In particular, TAM acts as an estrogen antagonist in the mammary gland and is clinically used for the treatment of breast cancer. In cell-based assays, only 4-OHT, but not TAM, acts as an antagonist and only vis-à-vis ERR (Coward et al. 2001). 3D structure analysis of ERRγ predicts that 4-OHT could be fitted into its ligand-binding cavity only if one assumes an antagonist conformation of the LBD (Greschik et al. 2002). Again a micromolar range is necessary to obtain half-maximal inhibition in transcriptional assay (Coward et al. 2001) whereas nanomolar concentrations deactivate ERβ (Kuiper et al. 1997). This micromolar concentration could still be pharmacologically relevant given the doses administered in breast cancer treatment. Along this line, a recent publication has documented a correlation of expression between ERα and ERRγ in breast cancer patients (Ariazi et al. 2002). Although performed on a low number of samples, this study proposed ERRγ as a favorable prognostic factor for breast tumor outcome. Altogether this could also suggest that some of the antitumor effects of TAM might be mediated by ERRγ. This hypothesis is to be tested, as it remains to be investigated whether ER and ERRγ share target genes that can be regulated by 4-OHT. It will be also of the utmost importance to define the role of ERRγ in cellular proliferation in the context of breast cancer.

Conclusion

Orphan ERRs have been suggested to interfere with estrogen signaling at various levels. It could therefore be expected that compounds displaying estrogen agonist or antagonist activities should also regulate ERR transcriptional activities. Inverse agonists of ERRβ/γ have been identified. Although the in vivo effects of DES and 4-OHT on ERRβ/γ remain to be documented, these discoveries, taken together with the availability of ERRγ’s 3D structure, offer promising perspectives in the pharmacology of these receptors. In contrast, no ERRα-interacting molecule has been identified to date that is relevant in cell-based assays (Coward et al. 2001). Expression of this receptor in human breast tumor was recently shown to be inversely correlated to estrogen responsiveness (Ariazi et al. 2002). In contrast to ERRγ, ERRα has thus been proposed as an unfavorable breast tumor marker which may activate estrogen-responsive targets in an estrogen-independent manner (as has been shown for the pS2 gene). Estrogen-unresponsive breast tumors often appear as relapse after a period of remission following 4-OHT treatment. These tumors represent a crucial problem, since per definition no antiestrogen-based treatment can be efficient. Confirming the expression of ERRα in these tumors, together with determining its effects on cell proliferation, could therefore lead to the proposal of ERRα as a new therapeutic target to design treatments against estrogen-independent tumors. This single example illustrates the importance of finding a regulator of the activity of ERRα. In other words, ERRα needs to meet a ligand, be it natural or synthetic.

Acknowledgements

Work in our laboratory is supported by grants from Association pour la Recherche sur le Cancer (ARC) and Ligue Contre le Cancer, comités Ardèche, Drôme and Loire. B H is funded by grants from Proskelia Pharmaceuticals. We are indebted to Vincent Laudet for constant support. We thank Frédéric Flamant, Pierre-Luc Bardet and Hervé Menoni for critical reading of the manuscript.

References

Bonnyele E, Merdad L, Kung V & Aubin JE 2001 The orphan nuclear estrogen receptor-related receptor alpha (ERRalpha) is

Heard DJ, Norby PL, Holloway, J & Vissing H 2000 Human ERα, a third member of the estrogen receptor-related (ERR) subfamily of orphan nuclear receptors: tissue-specific isoforms are expressed during development and in the adult. *Molecular Endocrinology* **14** 382–392.

Schreiber SN, Knutti D, Brogi K, Ullmann T & Kralli A 2003 The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related

Tzameli I, Pissios P, Schuetz EG & Moore DD 2000 The xenobiotic compound 1,4-bis[(2-(3,5-dichloropyridyloxyl)]benzene is an agonist ligand for the nuclear receptor CAR. *Molecular and Cellular Biology* **20** 2951–2958.

Vanacker JM, Pettersson K, Gustafsson JA & Laudet V 1999a Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta. *EMBO Journal* **18** 4270–4279.

Received 18 April 2003
Accepted 31 July 2003