The murine gene encoding parathyroid hormone: genomic organization, nucleotide sequence and transcriptional regulation

B He, T K Tong, F F-T Hiou-Tim, B Al-Akad¹, H M Kronenberg¹ and A C Karaplis

Division of Endocrinology, Department of Medicine, SmBd-Jewish General Hospital, Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste-Catherine Road, Montréal, Québec H3T 1E2, Canada

¹Endocrine Unit, Massachusetts General Hospital, Boston MA 02114, USA

(Requests for offprints should be addressed to A C Karaplis; Email: akarapli@ldi.jgh.mcgill.ca)

Abstract

The type 1 parathyroid hormone receptor (PTHR1) binds, with equal affinity, two ligands with distinct biological functions: PTH, the major peptide hormone controlling calcium homeostasis, and the paracrine factor, PTH-related peptide (PTHrP), a local regulator of cellular proliferation and differentiation. To clarify the complexity of possible interactions between two distinct ligands, PTH and PTHrP, and their common receptor in the intact organism, and to identify as yet unrecognized roles for PTH in normal physiology, we have cloned and characterized the structural organization, nucleotide sequence and transcriptional regulation of the murine gene encoding PTH. One recombinant clone isolated from a mouse genomic library contained 14 kb of DNA, encompassing the entire Pth gene. The transcriptional unit spans 3·2 kb of genomic DNA and, analogous to the human PTH gene, it is interrupted by two introns. The deduced mRNA encodes the 115-amino acid precursor, preproPTH. Comparison of the murine preproPTH sequence with other mammalian forms of the protein shows it to be highly conserved and to share limited structural similarity to PTHrP at the amino-terminal region, a domain critical for binding and activation of their common receptor. Putative binding motifs for the transcription factors sex-determining region Y gene product, transcriptional repressor CDP, hepatic nuclear factor 3β, GATA-binding factor 1, glucocorticoid receptor, SRY-related high mobility group box protein 5 and cAMP response element binding protein were identified in the 5′ flanking region of the Pth gene. When placed upstream of a reporter gene, these sequences failed to confer transcriptional regulation in response to 1,25(OH)₂ vitamin D₃, but responded positively to the addition of isoproterenol and forskolin. Mutational analysis identified a cAMP-response element in the Pth promoter.

Journal of Molecular Endocrinology (2002) 29, 193–203

Introduction

Parathyroid hormone (PTH) is the major peptide regulator of calcium homeostasis and is produced almost exclusively by parathyroid cells as a propeptide (Habener et al. 1984). It is the mature 84-amino acid form of the hormone, however, that is normally secreted in response to a decrease in serum calcium concentration. Structure–activity studies have shown that all the classic biological actions of PTH (stimulation of cAMP production, increase in calcium reabsorption, phosphaturia, bicarbonaturia, 1α-hydroxylation of 25-hydroxyvitamin D and stimulation of bone resorption) reside in the 1–34 region of the mature protein (Potts et al. 1982). All these bone and kidney-related functions of PTH are believed to be mediated by the type 1 PTH receptor (PTHR1) (Jüppner et al. 1991), a G protein-coupled cell surface receptor that recognizes the amino-terminal region of PTH. This receptor possesses the unusual property of binding both PTH and the paracrine factor PTH-related peptide (PTHrP) with nearly equal affinity. PTHrP was initially identified as the long-sought factor responsible for humoral hypercalcemia in patients with malignancy, and has come to be recognized as an important physiological agent that shares chemical structure and biological actions...
with PTH. However, it is distinct from PTH in many structural features and certain biological effects, particularly in fetal development and physiology (Strewler 2000). The capacity of the human PTHRe to bind both PTH and PTHrP is based on sequence similarity in the amino-terminal portion of these ligands.

Despite the overwhelming evidence for unique PTH action on the bone and kidney, effects in other tissues have also been reported. Thus PTH may contribute, along with PTHrP, to the growth of other tissues have also been reported. Thus PTH action on the bone and kidney, as well as PTHrP, is based on sequence similarity in the amino-terminal portion of these ligands.

The cloning of the type 2 PTH receptor (PTHRe), a second G protein-coupled cell surface receptor that binds only PTH (Usdin et al. 1995), has added a further degree of complexity. In contrast to PTHRe, which is distributed in virtually all tissues, PTHRe is expressed mainly in the brain, pancreas, sperm, arterial and cardiac endothelium and vascular smooth muscle, and in a number of endocrine cells (Usdin et al. 1996, 1999a), suggesting unique actions for PTH at these sites, although the natural ligand for this receptor is likely to be the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39), rather than PTH itself (Usdin et al. 1999b). Characterization of a third PTH receptor with specificity for the carboxy-terminal region of PTH has also been reported in osteoblasts, rat parathyroid (PT-r3) cells, and osteocytes (Inomata et al. 1995, Divieti et al. 2001). It would seem, therefore, that several distinct properties could be attributed to PTH, probably mediated by a variety of receptors. Whether these new biological effects of PTH have potential physiological relevance remains to be determined.

With the intention of examining this issue in the intact organism, we have set out selectively to remove the Pth gene from the mouse genome, through the gene targeting approach. Mice carrying the Pth-null mutation can then be generated and studied for associated abnormalities. As a first step in generating Pth-null mice, we have isolated mouse recombinant genomic Pth clones and characterized the genomic organization, nucleotide sequence, and transcriptional regulation of the murine Pth gene.

Materials and methods

Southern blot analysis of murine genomic DNA

Genomic DNA (10 µg), prepared from D3 mouse embryonic stem (D3 ES) cells (129/sV strain) (Doetschman et al. 1985), was digested with EcoRI. The DNA was fractionated on a 0·7% agarose gel and transferred onto a nitrocellulose membrane using standard procedures (Sambrook et al. 1989). Hybridization with an [α-32P]dCTP-labeled random-primed human PTH cDNA probe (Vasicek et al. 1983) was carried out at 42 °C in 50% formamide, 4 × saline sodium citrate in the central nervous system (Fitzpatrick et al. 1992, Hock et al. 2002). Whether any or all of these functions, however, are actually mediated by circulating PTH, or rather by locally produced PTHrP, remains speculative.

Cloning of the mouse Pth gene

A mouse genomic library constructed by cloning partial Sau3A digests of genomic DNA from D3 ES cells into the BamHI site of the phage lambda-DASH II (Stratagene, La Jolla, CA, USA) was kindly provided by T Doetschman. Approximately 700 000 plaque-forming units (pfu) were screened with a 32P-labeled human PTH cDNA probe and two positive clones were plaque purified. The DNA from one positive clone was harvested using the plate lysis method and EcoRI fragments were further subcloned into pGEM-2 (Promega) for mapping and sequencing.

Nucleotide sequence analysis

The dideoxynucleotide method was used for sequencing both strands of the cloned DNA fragments (Sanger et al. 1977). Initially, oligonucleotide primers were synthesized corresponding to rat exonic sequences (Heinrich et al. 1984). All subsequent primers were derived from murine Pth
sequences. Regions of poor clarity were verified by automated sequencing using an Applied Biosystems 373A DNA sequencer.

Expression of mouse Pth mRNA

Total RNA (10 µg) from mouse thyroparathyroidal tissue was denatured in an aqueous solution consisting of 50% formamide (v/v) and 6% formaldehyde (v/v) and fractionated by electrophoresis through a 1·2% agarose gel containing 6% formaldehyde. Four micrograms of RNA size markers in addition to the 28S and 18S rRNA. Millennium Markers (Ambion) were used as size markers in addition to the 28S and 18S rRNA. The fractionated RNAs were transferred onto a nitrocellulose membrane and the blot was hybridized with a 32P-labeled 500-bp HindIII–XhoI fragment encompassing exon 2 sequences of the murine Pth.

To identify additional sites of Pth expression, RT-PCR was performed using DNasel-treated total RNA isolated using Trizol (Gibco) from mouse thyroparathyroidal tissue, bone, kidney, liver, lung, testis and thymus, as described previously (Gunther et al. 2000), except that, for Pth, annealing was at 61 °C and the corresponding primers were designed from the murine sequence. The following primers were used: Pth forward: 5′-ATGATGTCTGCAACACCATTG GCT-3′ and Pth reverse: 5′-CTGTCTAGAGATTAAAATAC-3′; hypoxanthine guanine phosphoribosyl transferase (Hprt) forward: 5′-AGCGTATGAGGCATTAGTCACTT ATCCTTAACAATAAAAATGCT-3′; hypoxanthine guanine phosphoribosyl transferase (Hprt) reverse: 5′-GT TGAGAGATCATC-TCCACC-3′. The identity of amplified bands was confirmed by Southern blot analysis and direct DNA sequencing (thyroparathyroidal tissue and thymus).

Generation of promoter constructs

The 11·4 kb EcoRI DNA segment containing the murine Pth gene was digested with BamH1 and the resulting 4·6 kb EcoRI–BamH1 fragment encompassing 5′-flanking sequences and part of exon 1 was ligated into the EcoRI site in the Multiple Cloning Site (MCS) of the pSEAP2-Enhancer vector (control vector; Clontech), immediately upstream of the coding region of the secreted human placental alkaline phosphatase reporter gene (4·6/pSEAP-E). The EcoRI–BamH1 segment was also used to obtain additional deletion fragments by digestion with KpnI, XhoI or ClaI, and ligating the DNA segments in the MCS of pSEAP2-Enhancer, thereby generating plasmids 3·8/pSEAP2-E, 2·7/pSEAP2-E, and 0·2/pSEAP2-E respectively.

Site-directed mutagenesis of the putative cAMP responsive element (CRE) in the promoter region was accomplished using the Chameleon Double-Stranded Site-Directed Mutagenesis Kit (Stratagene), with the SW3 selection primer (5′-GGTTTCTTAGTCGTAGGTGGCATT TTTCG-3′) in conjunction with the sequence-specific mutation primer 5′-GCCAGAGAACGAG GAGGAAATCTTCTCCTAAACATAAAAATAC-3′ (bold letters indicate altered nucleotide residues). The mutated ClaI–BamH1 fragment was ligated into the EcoRI site in the MCS of pSEAP2-Enhancer, generating plasmid 0·2 m/pSEAP2-E.

Cell culture and transfection

Rat pituitary GH4C1 and ROS17/2·8 cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum (Gibco Life Technologies) in a humidified atmosphere with 5% CO2 at 37 °C. Cells were transiently transfected in six-well plates, using Fugene6 (Roche Diagnostics) with 3 µg/well pSEAP2-E-based promoter plasmids with appropriate amounts of carrier DNA (pcDNA3) to compensate for differences in vector size, and 1 µg/well pcDNA3-βGal that directs expression of β-galactosidase. The latter was used to correct for transfection efficiency. In some experiments, cells were treated with isoproterenol (1 × 10−7 M), forskolin (1 × 10−6 M) or 1,25(OH)2 vitamin D3 (1 × 10−8 M) 18 h after transfection and then again the following day. Conditioned media samples were collected 48 h and 72 h after transfection, at which time cells were also harvested and alkaline phosphatase and β-galactosidase activities were determined according to the manufacturer’s instructions.

Statistical analysis

Differences between treated and control samples derived from five independent experiments, each performed in triplicate, were analyzed by the Student’s t-test and one-way analysis of variance using the software program GraphPad Prism, v3.0 (GraphPad Software, Inc., San Diego, CA, USA).
All data are presented as mean ± S.E. The value $P < 0.05$ was considered significant.

**Results**

**The murine $Pth$ is a single-copy gene**

Southern blot analysis was used to determine the copy number of the $Pth$ gene in the mouse genome. EcoRI-digested genomic DNA from D3 ES cells was fractionated on an agarose gel and transferred to a nitrocellulose membrane. Hybridization with a human $PTH$ cDNA probe demonstrated a unique 11 kb EcoRI band (Fig. 1A), suggesting that the $Pth$ gene exists as a single-copy gene in the murine genome.

**Cloning and analysis of the structural gene encoding PTH**

A mouse genomic library from D3 ES cells was screened with a $^{32}$P-labeled human $PTH$ cDNA probe and two positive clones were plaque purified, each containing approximately 14 kb inserts. The DNA from one positive clone ($\lambda$-2) was harvested using the plate lysis method and EcoRI fragments were further subcloned into pGEM-2 for mapping and sequencing. Characterization of one of these clones showed it to contain the entire mouse $Pth$ gene (Fig. 1B). The transcriptional unit of murine $Pth$ was located on an EcoRI restriction fragment of 11.4 kb, consistent with results of the Southern blot analysis.

**Genomic organization and deduced amino acid sequence**

Murine $Pth$ was shown to span 3.2 kb of genomic DNA (Fig. 1B) and to contain three exons interrupted by two introns (GenBank accession Nos AF066074 and AF066075). The assignment of intron–exon junctions was based on comparison with rat genomic and cDNA sequences and 5′–3′ splice consensus sequences. All intron sequences immediately adjacent to the exons obey the GT/AG rule. Exon 1 encodes the 5′-untranslated...
region (UTR), whereas exon 2 encodes six nucleotides of the 5′-UTR and the prepro-coding region encompassing a pre (or signal) sequence of 25 amino acids and part of a basic propeptide of six amino acids. Exon 3 encodes the Lys–Arg prohormone cleavage site, the mature 84 amino acid peptide, and the 3′-UTR of the gene containing the canonical motif AATAAA that serves as signal for polyadenylation of mRNAs.

From the complete nucleotide sequence of the presumed mRNA encoded by the mouse Pth, the amino acid sequence of the murine preproPTH was deduced. Alignment of full-length amino acid sequences of mouse and other mammalian preproPTH forms is shown in Fig. 2A. A high level of conservation is evident among the various species in the prepro sequence, specifically amino acids −16 to −14 (A-V/I-L-C) in the signal sequence portion and the basic residues (KR) at position −2 and −1 recognized by prohormone convertases that cleave the pro region from the mature peptide. The amino-terminal 1–34 portion, a region known to be responsible for the classic biological actions of PTH, displays an equally high degree of sequence identity. This high sequence identity is also shared in part by the corresponding domain of the mouse PTHrP (Mangin et al. 1990). Here, nine of the first 13 amino acids are identical, whereas in the region 14–32, only three residues are the same, followed by prominent structural divergence (Fig. 2B). Interestingly, there is also marked conservation of amino acid composition from one species to another in the carboxy-terminal region of PTH, suggesting potential biological functionality for this part of the protein.

The mouse sequence contains five substitutions (K-3R, K26R, V31M, R50K and A81S) in residues that have been conserved in all other mammalian preproPTH species examined. Overall, these changes represent conservative amino
acid substitutions. Compared with its human orthologue, the putative mature mouse PTH protein exhibits a 70% sequence identity and 85% sequence similarity at the amino acid level (data not shown).

**Expression of the mouse Pth mRNA**

To determine the size of murine Pth mRNA, total RNA from mouse thyroparathyroidal tissue was subjected to electrophoresis on agarose gel, transferred to nitrocellulose membrane filter and hybridized to the labeled HindIII–XhoI fragment encompassing exon 2 of the mouse gene. As shown in Fig. 3A, the probe hybridized with a single transcript of ~800 bp. Thus a single mRNA transcript is derived from the murine Pth gene. Its size is consistent with the predicted Pth cDNA and comparable to that reported for the rat Pth mRNA (Heinrich et al. 1984). Using the more sensitive method of RT-PCR followed by Southern blot analysis, Pth transcripts were also detected in the thymus, as previously reported (Gunther et al. 2000), and in the testis (Fig. 3B).

**The Pth promoter region**

With the aim of identifying potential regulatory elements in the 5′ flanking region of the mouse Pth gene...
The murine Pth gene

BH E and others

Journal of Molecular Endocrinology (2002) 29, 193–203

www.endocrinology.org

Downloaded from Bioscientifica.com at 10/15/2022 06:36:27AM via free access
gene, a 255 bp region upstream of the main transcription start site was analyzed using TFSEARCH (Kyoto University, Kyoto, Japan) for putative transcription factor binding sites. Several transcriptional control elements were identified in the Pth promoter region, including a TATA binding protein (TBP; TFIIID) element in the −33 bp to −24 bp region, corresponding to the TATA-like box. Possible recognition and binding sites for transcription factors transcriptional repressor CDP (CDP), hepatic nuclear factor 3β (HNF-3β), GATA-binding factor 1 (GATA-1), sex-determining region Y gene product (SRY) and SRY-related high mobility group box protein 5 (Sox-5) were also present in the promoter region, as indicated in Fig. 4A. Examination of this sequence also revealed the presence of one glucocorticoid response element (GRE) half-site, but not a canonical GRE, and a sequence that resembles the canonical CRE.

To identify functional positive or negative cis-acting regulatory elements in the 5′-flanking region of the Pth gene, DNA sequences (EcoRI at −4·6 kb, KpnI at −3·8 kb, XbaI at −2·7 kb, or ClaI at −0·2 kb, to the BamHI site at position +65) were cloned immediately upstream of the coding region of the secreted human placental alkaline phosphatase reporter gene in the SEAP2-Enhancer vector. Promoter transcriptional activity was examined after transient transfection in rat pituitary GH4C1 cells by measuring alkaline phosphatase activity in the conditioned medium. Sequential deletions from this region in the 5′ to 3′ direction resulted in a stepwise increase in Pth promoter transcriptional activity (Fig. 4B). Maximal levels were observed with the 0·2 kb ClaI–BamHI fragment compared with the other constructs (5·8-fold increase in activity over the 4·6-kb EcoRI–BamHI segment), suggesting that inhibitory sequences that regulate cell-specific gene expression probably localize to the more 5′ regions of the promoter.

We next examined the transcriptional regulation of the Pth promoter fragments by 1,25(OH)2 vitamin D3 after its addition to the culture medium. As shown, 1,25(OH)2 vitamin D3 did not decrease Pth promoter activity with all of the constructs tested (Fig. 4B). Similar results were observed after transfection of the promoter fragments in ROS 17/2·8 cells and persisted even after co-transfection of the vitamin D receptor (VDR) cDNA in GH4C1 cells (results not shown).

In contrast, addition of isoproterenol (1 × 10−7 M) or forskolin (1 × 10−6 M) to the culture medium increased promoter transcriptional activity, suggesting the presence of a CRE in this region. A sequence resembling the canonical CRE (5′-TGACGTCA-3′) localizes at position −47 to −40 and is also present in the human, rat and bovine sequences. In ROS 17/2·8 and GH4C1 cells, addition of isoproterenol to the conditioned medium resulted in significant increases in the transcriptional activity of the XbaI–BamHI and specifically the ClaI–BamHI (2·1-fold) Pth promoter fragments. Similar results were observed after the addition of forskolin (data not shown). Finally, site-directed mutagenesis of this sequence (TGA CATCA to GGAATCT) totally abrogated the capacity of the ClaI–BamHI fragment to increase the level of alkaline phosphatase activity in the conditioned medium in response to isoproterenol (Fig. 4B) or forskolin (data not shown), indicating that this sequence is a functional CRE.

Discussion

In this study, we have cloned and characterized the murine Pth gene by determining its genomic organization, nucleotide sequence and transcriptional regulation. The structural organization of the mouse gene is identical to that reported for the human (Vasicek et al. 1983) and rat genes (Heinrich et al. 1984), with complete conservation of exon–intron structures amongst species. Likewise, the open reading frame of the putative mouse Pth gene is contained in two exons and encodes a protein of 115 amino acids that shares a high degree of sequence identity with other mammalian homologues. The sequence similarity is apparent in most regions of the protein, including the prepropeptide, and the amino- and carboxy-terminal portions. In the prepropeptide, it encompasses: residues −16 to −14 (A-V/I-C) in the signal sequence that contain a cysteine residue previously shown to be critical for correct targeting of the nascent polypeptide chain to the endoplasmic reticulum (Karaplis et al. 1995); the cleavage site for signal peptidase enzyme at residues −8 to −6 (DGK); and the basic residues at position −2 and −1 (KR) recognized by the prohormone convertases furin (paired basic amino acid cleaving enzyme (PACE)) and PC7, a member of the proprotein convertase (PC) family,
both of which cleave the pro region from the mature peptide (Hendy et al. 1995, Canaff et al. 1999).

In the amino-terminal domain, the high degree of conservation and sequence similarity with the corresponding region of PTHrP emphasize the pivotal importance of this part of the protein in binding and activation of PTHR1 and underscore the likelihood of a biological overlap between the two ligands and their common receptor. Evidence for an in vivo functional overlap between PTH and PTHrP has come primarily from gene targeting studies. Mice homozygous for Pthrp gene ablation are born alive (meeting Mendelian expectations), but die soon after birth because of a multitude of skeletal deformities that arise as a consequence of diminished proliferation and inappropriate differentiation of chondrocytes in the developing skeleton (Amizuka et al. 1994, Karaplis et al. 1994). In contrast, animals homozygous for the Phr1-null allele exhibit a more severe phenotype characterized by embryonic lethality (Lanske et al. 1996). A likely explanation for the early demise of the receptor-null animals may stem from the ability of circulating PTH to compensate partly for the absence of PTHrP, but not for that of the receptor.

Our finding of amino-terminal sequence similarity between the two murine proteins now adds further support to this concept.

Like the amino-terminus, the carboxy-terminal sequence of PTH is highly conserved amongst species, which adds further support to the intriguing speculation that this region of the protein may also serve distinct physiological functions. Circulating carboxy-terminal PTH peptides, previously assumed to be biologically inert, are generated by peripheral metabolism of intact PTH or are directly secreted, in a calcium-dependent manner, by the parathyroid glands. Interestingly, PTH 7–84 was recently shown to inhibit the calcemic actions of PTH(1–84) and PTH(1–34) in parathyroidectomized animals at doses much lower than would be predicted to antagonize either hormonal form effectively at the level of the PTHR1 (Slatopolsky et al. 2000, Nguyen-Yamamoto et al. 2001). This anticalcemic effect of PTH(7–84) in vivo is a consequence of impaired osteoclast differentiation and is probably mediated via receptors distinct from PTHR1 and presumably specific for PTH carboxyl fragments on bone cells (Divieti et al. 2002).

In view of the fact that no parathyroid cell line exists that could be used to study the regulation of Pth gene transcription in a setting that would reflect the in vivo regulation pattern, we had to restrict our studies to heterologous cell lines (Demay et al. 1992). In general, sequences upstream of a gene contain regulatory sequences in addition to sequences that determine tissue expression specificity. Arnold’s group has shown that 4 kb of genomic DNA upstream from the human PTH gene was sufficient to direct parathyroid gland-specific expression in transgenic mice (Imanishi et al. 2001). In our study, progressive 5' to 3' deletions from this region resulted in increased promoter transcriptional activity when expressed in rat pituitary GH4C1 cells, with the 0·2 kb ClaI–BamHI fragment showing a maximal increase in activity over the 4·6 kb EcoRI–BamHI DNA segment. Conceivably, sequences in the 5'-flanking region of the murine Pth gene determine parathyroid cell-specific gene expression and, after their deletion, levels of reporter gene expression increase in the heterologous cell line.

The present study also shows that Pth gene expression is further regulated by agents that increase intracellular cAMP concentrations – either isoproterenol, a β-adrenergic agonist for which the receptor is coupled to adenylate cyclase in GH4C1 cells (Gordeladze 1990), or forskolin, a plant diterpene, known to stimulate adenylate cyclase. A sequence that resembles the canonical CRE but deviates in one position in the center of the recognition motif is found at position −47. This element, shown to be functional and to confer cAMP-responsiveness, is also present in the rat, bovine and human PTH promoters (Rupp et al. 1990). It could be speculated that the modest (approximately two-fold) effect of isoproterenol or forskolin on the promoter activity is due to the deviation from the consensus sequence (TGACGTCA) in the center of the putative CRE (TGACATCA). In other systems, however, this element does contribute to a dramatic activation of promoter activity. Alternatively, elements in its vicinity in the Pth promoter may exert effects that partly obscure the cAMP induction mechanism. At present, little is known about the connection between the CRE and Pth expression, but stimulators of protein kinase A have been reported to increase Pth mRNA levels in bovine parathyroid cells (Moallem et al. 1995).
It is, perhaps, somewhat perplexing that our studies did not identify DNA sequences that confer vitamin D-mediated regulation of Pth promoter activity. Demay and colleagues (Demay et al. 1992, Mackey et al. 1996) have reported that a single copy of the motif AGGTTCA, homologous to the motifs repeated in the up-regulatory 1,25(OH)2 vitamin D3-response element in the rat and human osteocalcin genes, mediates transcriptional repression of Pth in response to 1,25(OH)2 vitamin D3. This sequence, however, is not preserved across species and is absent from the 5′-flanking region of the mouse and rat Pth genes. In contrast, others have demonstrated that two imperfect repeats, GGGTCA and GGTTGT, which are separated by a 3-bp spacer in the avian PTH gene, are responsible for binding the 1,25(OH)2 vitamin D3 receptor and mediating negative regulation of gene transcription (Liu et al. 1996). Whether sequences further upstream from the EcoRI site (4–6 kb) confer vitamin D-dependent gene repression of the murine Pth gene remains to be determined.

Finally, the sequence TGTTCT at bases −85 to −80, which corresponds to the high-affinity GRE consensus half-site, is present in a number of glucocorticoid-responsive genes and has been shown to impart dexamethasone responsiveness to homologous promoter fragments (Chandrasekhar et al. 1999). Treatment with dexamethasone has been reported to increase PTH mRNA in human parathyroid cells in vitro (Peraldi et al. 1990). Further studies will be required to confirm the role of this individual GRE in the glucocorticoid responsiveness of the Pth promoter.

In summary, we have cloned from a D3 ES cell genomic library an 11·4 kb EcoRI DNA fragment encompassing the entire murine Pth. This study has made possible the description of the gene structure and of the structural and functional characteristics of its promoter sequence. These observations provide the bases for more detailed investigation of the molecular mechanisms controlling expression of the Pth gene in parathyroid cells, and for the targeted disruption of Pth in embryonic stem cells. The production of mice null for the Pth gene and double-null for the Pth/Pthrp genes will help clarify the potential for functional overlap between two ligands, PTH and PTHrP, and their common receptor, and shed light on as yet unrecognized roles for PTH in normal physiology.

Acknowledgements

We thank J H White for providing us with 1,25(OH)2 vitamin D3 and the VDR cDNA. This work was supported by grants from the Canadian Institutes of Health Research (CIHR) and Canadian Arthritis Network. A C K is the recipient of a CIHR Scientist Award.

References


Canaff L, Bennett HP, Hou Y, Seidah NG & Hendy GN 1999 Proparathyroid hormone processing by the proprotein convertase-7: comparison with furin and assessment of modulation of parathyroid convertase messenger ribonucleic acid levels by calcium and 1,25-dihydroxyvitamin D. Endocrinology 140 3633–3642.


Mackey SL, Heymont JL, Kronenberg HM & Demay MB 1996 Vitamin D receptor binding to the negative human parathyroid hormone vitamin D response element does not require the retinoid X receptor. *Molecular Endocrinology* **10** 298–305.


Received in final form 14 June 2002

Accepted 14 June 2002