Negative regulation of nuclear factor-κB activation and function by glucocorticoids

W Y Almawi and O K Melemedjian

Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain

1Department of Biology, American University of Beirut, Beirut, Lebanon

(Requests for offprints should be addressed to W Y Almawi, Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, PO Box 22979, Manama, Bahrain; Email: wassim@agu.edu.bh)

Abstract

Glucocorticoids (GCs) exert their anti-inflammatory and antiproliferative effects principally by inhibiting the expression of cytokines and adhesion molecules. Mechanistically, GCs diffuse through the cell membrane, and bind to their inactive cytosolic receptors (GRs), which then undergo conformational modifications that allow for their nuclear translocation. In the nucleus, activated GRs modulate transcriptional events by directly associating with DNA elements, compatible with the GCs response elements (GRE) motif, and located in variable copy numbers and at variable distances from the TATA box, in the promoter region of GC-responsive genes. In addition, activated GRs also acted by antagonizing the activity of transcription factors, in particular nuclear factor-κB (NF-κB), by direct and indirect mechanisms. GCs induced gene transcription and protein synthesis of the NF-κB inhibitor, IκB. Activated GR also antagonized NF-κB activity through protein–protein interaction involving direct complexing with, and inhibition of, NF-κB binding to DNA (Simple Model), or association with NF-κB bound to the κB DNA site (Composite Model). In addition, and according to the Transmodulation Model, GRE-bound GR may interact with and inhibit the activity of κB-bound NF-κB via a mechanism involving cross-talk between the two transcription factors. Lastly, GR may compete with NF-κB for nuclear coactivators, including CREB binding protein and p300, thereby reducing and inhibiting transcriptional activation by NF-κB. It should be noted that, in exerting its effect, activated GR did not affect the correct assembly of the pre-initiation (DAB) complex, but acted rather more proximally in inhibiting the correct assembly of transcription factors in the promoter region, and thus transcriptional initiation.

Journal of Molecular Endocrinology (2002) 28, 69–78

Introduction

Glucocorticoids (GCs) are clinically used in treating disorders of heightened immunity, including transplantation rejection and autoimmunity (Almawi et al. 1998a). Despite a vast literature on their effects on T cell activation, the mechanism of action of the GCs remains incompletely understood. It is now recognized that their mode of action is multifaceted, since evidence of blockade of T cell immunity by the GCs at several stages in the T cell activation cascade is well documented (Almawi et al. 1996a, 1998a). The major routes by which GCs mediate their effects are many, the most significant of which are inhibition of cytokine production (Kwon et al. 1994, Mori et al. 1997, Almawi et al. 1998a) and, for some cytokines, signaling through their high-affinity receptor complex (Paliogianni et al. 1993, Monfar & Blenis 1996, Sakai et al. 1999, Almawi & Tamim 2001). Paradoxically, GCs upregulated the expression of some (proinflammatory) high-affinity cytokine receptors on target cells in the face of lost cytokine stimulation (Almawi et al. 1998b, Lukiw et al. 1999).

Originally, it was postulated that this inhibition involved binding of the hormone-activated GC
An overview of NF-κB and its role in T cell activation

Activation of T cells by ligating the T cell receptor (TcR) and the CD3 complex to foreign peptide–MHC class II complex bound on antigen-presenting cells (signal 1) (Wange & Samelson 1996, Madden 1995) is a highly ordered process, which involves activation of downstream intracellular target molecules and induction of cellular activation. Optimal T cell activation requires, in addition, the provision of costimulatory signals imparted by CD4/CD8 coreceptors, CD28 (Lucas & Germain 2000), and cytokine receptors (Curtisinger et al. 1999) among others (signal 2), which synergize with primary calcium-dependent TcR-CD3 ligation (signal 1), resulting in induction of the interleukin (IL)-2 autocrine pathway (Germaine 1994), and the temporal expression of cytokine genes and high affinity cytokine receptors (Curtisinger et al. 1999, Slifka & Whitton 2000). Signaling through the antigen-specific TcR in conjunction with non-cognate costimulatory signals results in the elevation of intracellular calcium and the induction of calmodulin-regulated enzymes, including the serine-threonine phosphatase, calcineurin (Clipstone & Crabtree 1992). In addition, protein kinase C (PKC) becomes activated, and translocates from cytosolic to membrane-bound compartments where it expresses its enzymatically active conformation. This induces the activation and nuclear translocation of the nuclear factors (nuclear factor of activated T cells (NF-AT)) (induced by calcineurin), and NF-κB where they bind the IL-2 enhancer and stimulate IL-2 transcription (Angel & Karin 1991, Blank et al. 1992).

NF-κB, a member of the mammalian rel gene family which comprises p105/p50, p100/p52, p65 (RelA), RelB, and c-Rel (Baeuerle & Baltimore 1996), is a heterodimer of p65 (RelA) and p50, and in the inactivated state is sequestered in the cytoplasm through the ankyrin repeats of its specific inhibitor, IκB. IκB, a member of a family of 7 inhibitory molecules that comprises IκBa, IκBβ, IκBe, and IκBγ and others (Ghosh et al. 1998), masks the nuclear localization signal of NF-κB, resulting in its retention in the cytoplasm. Activation by extracellular signals induces phosphorylation and ubiquitinylation of IκB by specific IκB kinases (IKKα and IKKβ), leading to its rapid proteolytic degradation, and thus the release of NF-κB (Cohen et al. 1998, Ghosh et al. 1998). NF-κB then undergoes nuclear translocation and binds its decameric DNA response element as a homo- or heterodimer comprising p50 and p65 (RelA) subunits, thus stimulating the transcription of NF-κB-regulated genes (Baeuerle & Baltimore 1996, Ghosh et al. 1998), including cytokine and IκB genes (Beg & Baldwin 1993, Scheinman et al. 1995). Persistent NF-κB activation, in turn, leads to increased IκB synthesis, and sequesters cytosolic NF-κB thereby attenuating its activity (Beg & Baldwin 1993, Baeuerle & Baltimore 1996).

Glucocorticoid antiproliferative effects

The anti-proliferative effect of GCs results from inhibition of cytokine expression at the transcriptional and post-transcriptional levels (Almawi et al. 2002). GCs inhibited the expression of proinflammatory and immunoregulatory cytokines, including IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-11, IL-12, IL-15, IL-16, interferon-γ, tumor necrosis factor-α (TNF-α), and the colony-stimulating factors (CSF) macrophage (M)-CSF, granulocyte (G)-CSF, CSF-1, and granulocyte-macrophage (GM)-CSF (reviewed in Almawi et al. 1996a, 1998a). Inhibition by GCs of cytokine expression was specific for the GCs, as evidenced by the failure of non-GC steroids to inhibit cytokine expression.
Molecular mechanism of glucocorticoid action

Owing to their lipophilic nature and low molecular weight, GCs diffuse through the membrane lipid bilayer, where they bind their intracellular receptor (GR), a hormone-activated, dual zinc finger transcription factor. Depending on the target gene, ligand-activated GRs may stimulate (transactivation), or alternatively inhibit (transrepression) gene transcription. The former is exemplified by the capacity of GCs to upregulate the expression of the specific NF-κB inhibitor, IκB (Auphan et al. 1995, Scheinman et al. 1995). The latter is evidenced by the well-documented capability of GCs in inhibiting the expression of IL-2 and other cytokine genes (Almawi et al. 1991, Mori et al. 1997). When not bound to its ligand, the GR is sequestered in the cytoplasm as an inactive complex with two molecules of heat shock protein (HSP-90), and other cytosolic proteins (Oakley et al. 1999).

Upon binding GCs, GR undergoes conformational changes, which allow it to dissociate from HSP-90 molecules. The hormone-bound GR then translocates to the nucleus, where it transiently associates with another heat-shock protein, HSP-56, and later dissociates from HSP-56 and binds as a dimer to conserved palindromic DNA sequences, named the GCs response elements (GRE). These comprise two boxes spaced by three variable nucleotides (GGTACAnnnTGTTCT), each box interacting with one of the two GR zinc fingers (Berg 1989, Miesfield 1990). GREs are located in variable copy numbers, and are found at variable distances from the TATA box in the promoter region of GCs-responsive genes, including cytokine genes (Almawi et al. 1990). Furthermore, depending on the target gene, binding of the GR to GRE sites may enhance or repress transcriptional activity (Northrop et al. 1992, Paliogianni & Boumpas 1995), and two classes of GREs mediate the effects of GCs: stimulatory GRE (sGRE) and negative GRE (nGRE), the former responsible for GCs stimulation, while the latter mediates GCs inhibition of gene expression. This confers a dual transcriptional modulatory capacity on the GR.

The GR is a member of the steroid superfamily which comprises steroid, thyroid hormone, vitamin D, and retinoic acid receptors (Evans 1988), and consists of 3 domains: a hormone (steroid)-binding domain, a highly conserved DNA-binding domain, and the least conserved N-terminal region (Evans 1988). Binding of hormone-activated GR to GRE elements results in blockade of transcriptional activity in a cis-acting (De Bosscher et al. 2000a) or a trans-acting fashion which involves induction of NF-κB (Auphan et al. 1995, Chen et al. 1993, Heck et al. 1997), including NF-AT (Northrop et al. 1992, Paliogianni et al. 1993, Chen et al. 2000). Reduction in transcription factor availability and/or function, in turn, resulted in downstream reduction in, and arrest of, transcriptional activity in target genes. In antagonizing

Antagonism of NF-κB activation and function by glucocorticoids

In addition to the GR-GRE interaction model, GCs reportedly repressed gene expression by antagonizing transcription factor activity and/or function. This was evidenced by the capacity of hormone-activated GR to repress the nuclear translocation and/or function of the transcription factors AP-1 (a dimer of c-Fos and c-Jun) (Vacca et al. 1992, Mori et al. 1997), NF-κB (De Bosscher et al. 1997, 2000b, Heck et al. 1997), and NF-AT (Northrop et al. 1992, Paliogianni et al. 1993, Chen et al. 2000). Reduction in transcription factor availability and/or function, in turn, resulted in downstream reduction in, and arrest of, transcriptional activity in target genes.
transcription factors, GR did not modulate the correct assembly of the pre-initiation complex (TFII–DAB complex), hence localized its effect upstream of the TATA box (Nissen & Yamamoto 2000). Several mechanisms were postulated for GCs' antagonism of NF-κB. These included induction of the synthesis of the NF-κB inhibitor, IκB (Auphan et al. 1995, Scheinman et al. 1995, Thiele et al. 2000), a protein–protein interaction model, which proposes that GR repressed NF-κB activation and/or function either by blocking its access to its DNA (κB) site (Mukaida et al. 1994, Ray & Prefontaine 1994, Newton et al. 1998), or by forming a complex with NF-κB which loses DNA capacity (De Bosscher et al. 1997, Nissen & Yamamoto 2000), and/or by competition with NF-κB for nuclear co-activators (Zhang et al. 1997).

Induction of IκB synthesis

The antagonism of NF-κB activity by GCs was described to be via stimulation of the expression of the NF-κB inhibitor, IκB, synthesis (Auphan et al. 1995, Scheinman et al. 1995). Increased IκB availability would result in the binding to, and sequestration of, NF-κB in the cytosol, thereby reducing NF-κB nuclear translocation, and hence attenuation of NF-κB-driven transcriptional activities (Fig. 1). This was supported by the findings that treatment of phorbol ester (TPA)-stimulated Jurkat cells (Auphan et al. 1995), TNF-stimulated HeLa cells (Scheinman et al. 1995), vascular epithelial cells of Crohn’s disease patients (Thiele et al. 2000), lipopolysaccharide-stimulated macrophages (Crinelli et al. 2000), and brain cells (Quan et al. 2000) with the GCs dexamethasone (DEX)
or prednisone (Pred) resulted in a concentration-dependent increase in IkB synthesis. Induction of IkB synthesis by GCs (assessed by gel shift and nuclear run-on transcription assays) did not affect IkB phosphorylation and subsequent degradation (Scheinman et al. 1995), thus constituting a negative feedback loop whereby increased IkB availability (mediated by GCs) resulted in profound inhibition of NF-κB translocation and activity (Auphan et al. 1995, Scheinman et al. 1995) (Fig. 1). In addition to its cytosolic site of action, IkB was shown to act at the nuclear level, where it complexed with and dissociated NF-κB from the kB DNA binding sites (Auphan et al. 1995, Scheinman et al. 1995).

Whereas some reports favored the induction of IkB synthesis by GCs as the mechanism by which GCs antagonized NF-κB activity, other reports failed to establish any link between the induction of IkB synthesis by GCs (if any) and subsequent antagonism of NF-κB by GCs. This was highlighted by the findings that GCs did not stimulate (Kleinert et al. 1996) or, according to other reports, decreased IkB synthesis, as was shown in TNFα-activated endothelial cells (De Bosscher et al. 1997) and IL-1β-stimulated epithelial cells (Newton et al. 1998). Heck et al. (1997), using a series of GR mutants, showed that mutants defective in IkB synthesis still antagonized NF-κB. In the same report, using a number of synthetic GCs analogs, it was shown that induction of IkB synthesis by GCs did not lead to repression of NF-κB activity (Heck et al. 1997).

In addition, the antagonism of NF-κB by GCs was shown to be independent of IkB induction (Heck et al. 1997, De Bosscher et al. 2000b, Goppelt-Struwe et al. 2000). This was based on the findings that in spite of stimulation of IkB synthesis by GCs, increased IkB availability did not affect (De Bosscher et al. 1997, 2000b) or only partially affected (Crinelli et al. 2000) the effects of GCs, and that the effects of GCs were resistant to cycloheximide treatment (De Bosscher et al. 1997), thereby arguing against de novo induction of an NF-κB inhibitor protein as a potential mechanism by which GCs antagonized NF-κB. Collectively, this ruled out the possibility of induction of de novo IkB or a GCs-mediated stabilization of cytosolic NF-κB association with IkB (Scheinman et al. 1995) as mechanisms by which GCs repress the transcription of cytokine genes.

In the light of arguments in favor of or against induction of IkB synthesis as the mechanism by which GCs antagonized NF-κB, it appears that stimulation of IkB synthesis and thus antagonism of NF-κB activity by GCs is either an independent event (Bourke & Moynagh 1999, Goppelt-Struwe et al. 2000), and/or is cell type specific (Costas et al. 2000, De Bosscher et al. 2000b). However, the latter mechanism is questioned as contradictory effects of GCs on IkB synthesis were observed in the same tissue and cell types. This was exemplified by the reported capacity, according to some reports, of GCs to induce IkB synthesis in brain cells (Quan et al. 2000) and in L929 cells (Costas et al. 2000), but is in sharp disagreement with other reports which showed that GCs did not affect IkB levels in brain cells (Bourke & Moynagh 1999) or in L929 cells (De Bosscher et al. 1997). This prompted the speculation that the effect of GCs on IkB synthesis and subsequently on NF-κB synthesis may be highly cell specific (De Bosscher et al. 2000b), or due to specific activation signals, and questioned whether stimulation of IkB synthesis by GCs is required or is sufficient to repress NF-κB activity (Heck et al. 1997).

Protein–protein interaction

GCs antagonized NF-κB through a protein–protein interaction between the hormone-activated GR and NF-κB subunits. The anti-proliferative effect of GCs was proposed to result from binding of GR to a critical site within NF-κB either prior to DNA binding (Simple Model), or following association of NF-κB with kB DNA binding site (Composite Model). Although association of the GR with DNA (nGRE) was not obligatory, it could not be ruled out.

The simple model

In the simple model, GR binds NF-κB forming a GR–NF-κB complex which does not bind DNA, illustrated in the capacity of the GR to bind to NF-κB (Adcock et al. 1995, Kleinert et al. 1996, De Bosscher et al. 1997), thereby abolishing its capacity to bind kB DNA sites (Fig. 2). In exerting its effect, GR did not alter the nuclear translocation (Adcock et al. 1995), or inhibit the synthesis of NF-κB (Newton et al. 1998, Kleinert et al. 1996), but rather acted by interfering with DNA binding through
reciprocal masking of a specific domain within the GR and NF-κB (Fig. 2). This did not result in a competitive displacement of previously DNA-bound NF-κB, but was associated with blockade of the binding of and transactivation by NF-κB (Mukaida et al. 1994, Adcock et al. 1995, Steer et al. 2000), associated with disruption of the interaction of the p65 subunit of NF-κB with basal transcription factor (De Bosscher et al. 2000a). This was evidenced by protein cross-linking and co-immunoprecipitation of both GR and NF-κB (Ray & Prefontaine 1994), and by the reversal of the GCs effect by over-expression of the NF-κB p65 subunit (Ray & Prefontaine 1994). Furthermore, it was specific for GR since other steroid/thyroid receptors failed to bind to and affect NF-κB transactivation (Caldenhoven et al. 1995). Although not tested for NF-κB, the capacity of the GR to inhibit NF-κB binding may, in principle, have resulted from suppression of a key signaling pathway involved in its activation, analogous to that described for the repression of AP-1 activity by GCs. Here, GCs inhibition of AP-1 activity was shown to be the result of proximal inhibition of c-Jun NH2-terminal kinase (JNK), a key mediator of AP-1 activation (Gonzalez et al. 2000). It is also plausible that the repression of NF-κB binding by GCs was the consequence of earlier antagonism of the binding and/or activation of other transcription factors, described as being required for efficient NF-κB binding to its putative DNA site (Casolaro et al. 1995, Chen et al. 2000).

The composite model

Whereas the simple model proposes that GR antagonized NF-κB by preventing its binding to DNA (κB sites) through formation of an inactive GR–NF-κB complex, the composite model stipulates that GR antagonized NF-κB through direct association with NF-κB without altering its DNA binding capability (Fig. 3). This reportedly

Figure 2 The Simple Model. In the simple model, hormone-activated GR did not affect the availability or translocation of NF-κB or its function, but rather it binds to NF-κB in the nucleus and/or cytosol, thereby forming a complex which failed to bind to DNA.
involved direct complexing between the two factors involving specific domains within NF-κB and GR. Accordingly, GR did not need to bind DNA, or dissociate NF-κB from DNA binding (Hart et al. 2000, Nissen & Yamamoto 2000), but rather acted by associating with NF-κB bound to its putative DNA site, thereby repressing its activity (De Bosscher et al. 1997) (Fig. 3). This was evidenced by the capacity of GR to associate with the trans-activating domain of the p65 (RelA) subunit of NF-κB (De Bosscher et al. 2000b, Nissen & Yamamoto 2000), which, in turn, destabilized the interaction of basal transcription factors (TFII-D) with the TATA binding domain (TBD) (Fig. 3). However, it remains to be seen whether the association of GR with the transcription factor is sufficient to repress the transcriptional activity of the latter or, in addition, requires the participation of a corepressor as was suggested by Nissen and Yamamoto (2000).

Figure 3 The Composite Model. In the composite model, ligand-activated GR did not bind DNA, but it associated with NF-κB bound at the κB DNA site, leading to inhibition of downstream transcriptional activities, without affecting the correct assembly of the pre-initiating complex at the TATA box. GR may act directly (B), or may require the participation of corepressor(s) (C). Pol II, RNA polymerase II.

The competition model

Insofar as coactivator proteins, including CREB binding protein (CBP), p300, steroid receptor coactivator (SRC)-1, and histone acetyltransferase (HAT) were described as stimulating the activity of NF-κB (Freedman 1999), and as GRs were shown to antagonize NF-κB, it was suggested that GR acted, at least in part, by competing with NF-κB for nuclear coactivators (Kamei et al. 1996, Aarnisalo et al. 1998) (Fig. 4). In support of this hypothesis were the findings that CBP augmented GR suppressive effects (Kino et al. 1999), enhanced the association of GR with, and hence suppressed, NF-κB activity (McKay & Cidlowski 2000, Sheppard et al. 1998), and that over-expression of CBP abrogated GR-mediated repression of NF-κB activity (Sheppard et al. 1998). GCs down-regulated mRNA and protein accumulation of SRC-1, a key adaptor coactivator, thereby providing for an autoregulatory loop of GCs action (Kurihara et al. 2000). Insofar as coactivators, including SRC-1 (Na et al. 1998, Sheppard et al. 1998) and CBP (Aarnisalo et al. 1998) were described as an integral link between basal transcription factors and other transcription factors, including GR and NF-κB (Na et al. 1998, Sheppard et al. 1998), competition for a limited amount of nuclear coactivators between GR and other induced transcription factors, at least in part, antagonized transcription factors (Fig. 4).

Other reports argued against competition for nuclear coactivator(s) as a mechanism by which GR antagonized transcription factor. For example, GR interacted directly with and inhibited NF-κB activity independently of CBP levels in the cell (De Bosscher et al. 2000b). While GR inhibited NF-κB binding and activity (Adcock et al. 1995, Steer et al. 2000), NF-κB DNA binding capacity was not affected by the level of nuclear co-activators, since increased NF-κB levels were seen in the face of overall reduction in CREB binding (Steer et al. 2000). Collectively, this questioned whether reduced CREB and other nuclear coactivator functions and GR repression of NF-κB were related. Furthermore, the transactivation and transrepression function of the GR were shown to be separate entities (Heck et al. 1997, Belvisi et al. 2001), and the requirement for a direct association with specific NF-κB subunits on overall GR function (activation or repression), without necessarily involving an adaptor or competing for a
nuclear coactivator, are well documented (Pearce et al. 1998). Additional studies are required to confirm, or alternatively rule out, competition for nuclear coactivator(s) as a mechanism by which GRs antagonize transcription factors.

Conclusion

During the last two decades significant advances have been made towards understanding the precise mode of action of the GCs, and it now appears to be multi-faceted, affecting both transcriptional and post-transcriptional events. In view of the cooperation between transcription factors in driving optimal transcriptional activation, it remains to be determined whether the effect of GCs on antagonizing NF-κB is a direct event or, alternatively, a consequence of an earlier antagonism of another factor in the activation cascade (Chen et al. 2000). The multitude of conclusions drawn from the literature indicate that GCs most likely affect several transcriptional events, as a single mechanism could not apply to all cell types and stimulation conditions. A thorough understanding of the mode of action of the GCs is of paramount importance in better management of GCs toxicity, and in the development of a future immunosuppressive regimen.

References

Almawi WY, Lipman ML, Stevens AC, Zanker B, Hadro ET & Strom TB 1991 Abrogation of glucocorticosteroid-mediated inhibition of T cell proliferation by the synergistic action of IL-1, IL-6, and IFN-gamma. Journal of Immunology 146 3523–3527.

Currie JM, Schmidt CS, Moudino A, Lins DC, Kell RM, Jenkins MK & Mescher MF 1999 Inflammatory cytokines provide a third signal for activation of naïve CD4+ and CD8+ T cells. *Journal of Immunology* **162** 3256–3262.

Sakai H, Toyota N, Ito F, Takahashi H, Hashimoto Y & Izuka H 1999 Glucocorticoids inhibit proliferation and adhesion of the IL-3-dependent mast cell line, MC/9, to NIH/3T3 fibroblasts, with an accompanying decrease in IL-3 receptor expression. *Archives of Dermatological Research* **291** 224–231.

Received 10 July 2001
Accepted 10 October 2001