Effects of a thyromimetic on apolipoprotein B-100 in rats

Y Wada, S Matsubara, J Dufresne, G M Hargrove, Z F Stephan¹, R E Steele¹ and N C W Wong

Departments of Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
¹Novartis Pharmaceuticals Corporation, Summit, New Jersey, USA

(Requests for offprints should be addressed to N C W Wong, Departments of Medicine and Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1; Email: ncwwong@acs.ucalgary.ca)

ABSTRACT

We have studied the effects of a cardiac sparing thyromimetic, CGS 23425, on postprandial levels of triglycerides, abundance of apolipoprotein B (apo B) protein and hepatic apo B mRNA expression in rats. When compared with control rats, triglyceride clearance was significantly accelerated by treatment with CGS 23425. A full return to baseline values was achieved within 8 h after ingesting a large quantity of fat, as compared to >24 h in control animals. The abundance of apo B-100 protein in CGS 23425-treated hyperlipidemic rats decreased in a dose-dependent manner, but levels of apo B-48 were not significantly affected. Like l-trioiodothyronine (l-T₃), treatment with 30 µg/kg CGS 23425 for 6 or 9 days decreased the levels of apo B-100 protein by 80% and 40% respectively. This change was paralleled by a 27% reduction in hepatic apo B-100 mRNA. To investigate a potential mechanism of CGS 23425 action, we measured in vitro apo B mRNA editing activity in hepatocellular extract from control or CGS 23425-treated rats. Treatment with CGS 2345 increased activity of the hepatic apo B-100 editosome, apobec-1. In human hepatoma cells which lack apobec-1 activity, apo B-100 mRNA levels remained the same in cells treated with or without the agent. In summary, these observations show that CGS 23425 decreases the levels of apo B-100 in rats. This action of CGS 23425 involves apo B-100 mRNA editing activity.

Journal of Molecular Endocrinology (2000) 25, 299–308

INTRODUCTION

Ischemic heart disease (IHD) is the number one cause of premature death in Western societies (Gordon & Kannel 1972, Mann 1977). Hypercholesterolemia arising from dietary indiscretion is a major risk factor underlying this deadly disease (Mann 1977). Circulating cholesterol is carried by a variety of particles including low density lipoprotein (LDL) and chylomicron. Abnormally high levels of LDL cholesterol are associated with increased risk for developing IHD (Cullen & Assmann 1997, Lamarche & Lewis 1998). Apolipoprotein B (apo B) is the structural component of chylomicrons and triglyceride-rich very low density lipoproteins (VLDL), an immediate precursor of LDL (Sigurdsson et al. 1975). There are two forms of apo B, the full-length translation product, apo B-100, and a shorter form, apo B-48, corresponding to the amino-terminal 48% of the full-length protein (Kane 1983). In humans, the small intestine produces both apo B-100 and apo B-48 while the liver only produces apo B-100 (Glickman et al. 1986). However, both forms are normally present in mouse and rat liver (Greeve et al. 1993). Apo B-48 is derived from apo B-100 mRNA via a single post-transcriptional cytidine deamination that modifies the CAA codon encoding Gln-2153 and changes it to UAA, a stop codon (Powell et al. 1987, Teng et al. 1993). This modification interrupts the normal translation of apo B-100 mRNA at codon 2153 and thus gives rise to the truncated isoform apo B-48.

L-Tri-iodothyronine (l-T₃) and its analogs lower cholesterol and enhance the conversion of apo B-100 mRNA to the apo B-48 form in rat liver (Davidson et al. 1988a,b, 1990). Although these beneficial effects of l-T₃ on lipoprotein metabolism
Western-blot analysis of apo B

Plasma was prepared by centrifugation, and samples were diluted 1/25 in 10 mM Tris–EDTA (TE), pH 7.5. Five microliters of the diluted sample were added to 15 µl SDS loading buffer (5% SDS, 10% glycerol, 1:5% dithiothreitol (DTT), 1% 2-mercaptoethanol, 0.02% bromophenol blue in 0.12 M Tris, pH 6.8) and boiled before separation by electrophoresis on a 3–5% gradient SDS-polyacrylamide gel. The separated proteins were transferred onto PVDF membrane (Millipore Corp., Bedford, MA, USA) by electroblotting at 30 V for 18 h. The membranes were incubated in blocking buffer (0.3% Tween-20 (TTBS) and 10% (w/v) skimmed milk powder in TBS (10 mM Tris–HCl, pH 7.5, 150 mM NaCl)) for 1 h followed by liberal washes with TBS and then exposed to rabbit anti-apo B-48/100 antibody (Biodesign, Kennebunk, ME, USA) at 1:1000 in blocking buffer for 1 h at room temperature. After further washing and exposure to donkey anti-rabbit immunoglobulin G conjugated to horseradish peroxidase (Amersham, Oakville, OT, USA) at 1:5000 for 1 h, immunoreactive proteins were detected by chemiluminescent detection according to the manufacturer’s instructions (ECL, Amersham). Visualization of rat apo B-100 and apo B-48 was performed within 1 min. The relative concentration of apo B-100 to apo B-48 was assessed by video-assisted densitometry.

Preparation of cDNA and polymerase chain reaction

cDNA synthesis by reverse transcription polymerase chain reaction (RT-PCR) was performed using a method described previously (Davidson et al. 1988a) with several modifications. Total cellular RNA from liver isolated using procedures described previously (Barrera-Hernandez et al. 1996) was further purified by extracting with phenol/chloroform and precipitated with ethanol. Three micrograms total RNA were reverse transcribed using 200 U Moloney murine leukemia virus (MMLV) reverse transcriptase (Gibco BRL, Gaithersburg, MD, USA) in a buffer containing a final concentration of 75 mM KCl, 50 mM Tris, pH 8.3, 3 mM MgCl₂, 10 mM DTT, 100 pmol random hexamers, 0.5 mM dNTPs, and 40 U RNAsin (Promega, Madison, WI, USA). After first strand cDNA synthesis, a 274 base pair fragment was amplified by means of the PCR. The following oligonucleotide primers were constructed containing the coding (PCR1) and non-coding (PCR3) sequences flanking nucleotide 6666 of apo B cDNA:
PCR1, ATCTGACTGGGAGAGACAATGAG at 6512; PCR3, CACGGATGTGAATATG-3′-TTCGTCGAC at 6786 (Davidson et al. 1988a). The primers for amplification from the control rat β-actin sequences (Nusel et al. 1983) were: coding, CATGAGTGTGACGTGACCATCC; and non-coding, TAACAGTCC-GCCTAGAAGCATTTG. PCR was conducted using 1 µM of each primer and 5 U Taq polymerase (Pharmacia, Morgan, Quebec, Canada) with final concentrations of 10 mM Tris, pH 9–10, 1.5 mM MgCl₂, 50 mM KCl, 0.2 mM dNTPs and 2 µl cDNA. The template was denatured at 94°C for 30 s, annealed at 55°C for 1 min, and extended at 72°C for 90 s, for a total of 22, 24, 25, 26 or 28 cycles with a final min extension at 72°C. After amplification, one-tenth of the PCR products were analyzed by 2-5% agarose electrophoresis to confirm the size of the amplified product and subsequently blotted onto nitrocellulose membrane (MSI, Westboro, MA, USA) in 0.4 M NaOH. Membranes were rinsed briefly in 2× SSC and baked at 80°C for 60 min. The apo B-100 or B-48 bands were normalized to the β-actin signal.

Differential hybridization

The following oligonucleotide was synthesized: B-GLN, ACTGATCAAATGTATCA, homologous to the 5′ end of apo B-100 mRNA at position 6679 (Davidson et al. 1988a). The oligonucleotide was radiolabeled by incubation with T4 polynucleotide kinase as previously described (Powell et al. 1987). Hybridization of Southern blots to 5′-end of apo B-100 RNA fragment, 6512 (Davidson et al. 1988a), the predicted products are 33 (CAA at nucleotide 6666) or 38 (UAA at nucleotide 6666, next C at nucleotide 6661) bases corresponding to abundance of apo B-100 and B-48 mRNA respectively. The intensity of the signals from unedited, apo B-100 and edited apo B-48 transcripts were determined by video-assisted densitometry or by using a phosphoimager (Molecular Dynamics, Uppsala, Sweden). The percentage of apo B-100 (CAA, unedited) and of B-48 (UAA, edited) was calculated by the signal from apo B-100 or B-48 by the sum of both signals.

Hepatocellular extracts

The S-100 fraction of hepatocytes was prepared according to the methods described previously (Dignam et al. 1983). The preparation of each sample required the pooling of livers of two rats from the control or treated group. Ammonium sulfate precipitation was used to concentrate apo B-100 editing activity in the S-100 fraction (Kristina et al. 1990).

In vitro editing assay

The relative hepatic apo B-100 editing activity from control and treated rats was assayed using methods described previously (Kristina et al. 1990, Sowden et al. 1996). Each reaction contained 50 µg hepatocellular protein from control or treated animals incubated for 3 h at 30°C with 10 ng apo B-100 RNA fragment, 6512–6786. The resulting products were analyzed using primer extension as described above and the intensity of the signals assessed using a phosphoimager or video-densitometry. The 6512–6786 segment of apo B-100 RNA was obtained by inserting the product of a PCR primed with PCR1 plus PCR3 using rat genomic DNA as template into pGEM-T (Promega). This construct was digested with SacI primer and 5 U Taq polymerase (Pharmacia, Morgan, Quebec, Canada) with final concentrations of 10 mM Tris, pH 9–10, 1.5 mM MgCl₂, 50 mM KCl, 0.2 mM dNTPs and 2 µl cDNA. The template was denatured at 94°C for 30 s, annealed at 55°C for 1 min, and extended at 72°C for 90 s, for a total of 22, 24, 25, 26 or 28 cycles with a final min extension at 72°C. After amplification, one-tenth of the PCR products were analyzed by 2-5% agarose electrophoresis to confirm the size of the amplified product and subsequently blotted onto nitrocellulose membrane (MSI, Westboro, MA, USA) in 0.4 M NaOH. Membranes were rinsed briefly in 2× SSC and baked at 80°C for 60 min. The apo B-100 or B-48 bands were normalized to the β-actin signal.

Differential hybridization

The following oligonucleotide was synthesized: B-GLN, ACTGATCAAATGTATCA, homologous to the 5′ end of apo B-100 mRNA at position 6679 (Davidson et al. 1988a). The oligonucleotide was radiolabeled by incubation with T4 polynucleotide kinase as previously described (Powell et al. 1987). Hybridization of Southern blots to 5′-end of apo B-100 RNA fragment, 6512 (Davidson et al. 1988a), the predicted products are 33 (CAA at nucleotide 6666) or 38 (UAA at nucleotide 6666, next C at nucleotide 6661) bases corresponding to abundance of apo B-100 and B-48 mRNA respectively. The intensity of the signals from unedited, apo B-100 and edited apo B-48 transcripts were determined by video-assisted densitometry or by using a phosphoimager (Molecular Dynamics, Uppsala, Sweden). The percentage of apo B-100 (CAA, unedited) and of B-48 (UAA, edited) was calculated by the signal from apo B-100 or B-48 by the sum of both signals.

Hepatocellular extracts

The S-100 fraction of hepatocytes was prepared according to the methods described previously (Dignam et al. 1983). The preparation of each sample required the pooling of livers of two rats from the control or treated group. Ammonium sulfate precipitation was used to concentrate apo B-100 editing activity in the S-100 fraction (Kristina et al. 1990).

In vitro editing assay

The relative hepatic apo B-100 editing activity from control and treated rats was assayed using methods described previously (Kristina et al. 1990, Sowden et al. 1996). Each reaction contained 50 µg hepatocellular protein from control or treated animals incubated for 3 h at 30°C with 10 ng apo B-100 RNA fragment, 6512–6786. The resulting products were analyzed using primer extension as described above and the intensity of the signals assessed using a phosphoimager or video-densitometry. The 6512–6786 segment of apo B-100 RNA was obtained by inserting the product of a PCR primed with PCR1 plus PCR3 using rat genomic DNA as template into pGEM-T (Promega). This construct was digested with SacI.
which cleaves the insert at the 3’ end and T7 RNA polymerase (Pharmacia) was used as per the manufacturer’s directions to produce the RNA. In a similar fashion, apo B-48 RNA 6512–6786 was obtained by T7 polymerase transcription from pGEM-T containing the fragment obtained by RT-PCR using total hepatic RNA as the template. Both the apo B-100 and -48 clones were verified by sequencing.

Cell culture
Human hepatoma Hep G2 cells were grown under previously described conditions (Murao et al. 1998). Cells grown to 70% confluence were exposed to 10⁻⁹ or 10⁻⁷ M CGS 23425 for 48 h. RNA was isolated from the cells as described above (Barrera-Hernandez et al. 1996). The content of apo AI mRNA was assayed by Northern-blot (Murao et al. 1998) and apo B mRNA levels were measured as described above.

RESULTS
CGS 23425 decreases postprandial levels of triglyceride in rats
To examine the effect of a thyromimetic on postprandial triglyceride clearance, rats were gavaged with water or an aqueous solution of CGS 23425. Results (Fig. 1) showed that serum triglyceride clearance was significantly hastened by CGS 23425. Triglyceride levels returned to baseline values within 8 h in rats treated with CGS 23425, whereas the same parameter in control rats was still elevated at 24 h after fat ingestion. Furthermore, the excursion above the baseline triglyceride value in treated animals was less than that in the controls.

CGS 23425 decreases levels of apo B-100 protein
Since triglyceride clearance was significantly accelerated by CGS 23425 treatment, we wondered whether this drug affected the levels of apo B in a hyperlipidemic rat model. Therefore, Western blot analysis was used to measure abundance of apo B-100 and apo B-48 in the plasma of rats treated with or without 30 µg/kg/day CGS 23425 for 6 and 9 consecutive days. Results (Fig. 2) showed that levels of apo B-100 decreased by 80% and 40% following 6 and 9 days of treatment, respectively, compared with control. However, apo B-48 levels remained the same in all groups. As expected, in hyperthyroid rats the apo B-100 levels were barely detectable and apo B-48 levels did not change significantly (Fig. 2).

CGS 23425 lowers apo B-100 protein in hypercholesterolemic rats
The above findings showed that CGS 23425 decreased levels of apo B-100 at a fixed dose. To define the effective range of this drug, we used Western-blots to measure the levels of apo B-100 and B-48 in fat-fed rats treated with various doses of CGS 23425. Results (Fig. 3) showed a dose-dependent decrease in apo B-100 protein. The minimal effective dose was 10 µg/kg and the maximum dose tested was 300 µg/kg leading to reductions of 50% and 83% respectively. However, apo B-48 levels remained essentially the same at all doses.

CGS 23425 decreases hepatic apo B-100 mRNA
The marked reduction in serum apo B-100 protein prompted us to examine whether the effect of CGS 23425 extends to apo B-100 mRNA levels in the liver of control and treated hyperlipidemic rats. In order to use RT-PCR as a semi-quantitative measure of apo B mRNA, the cDNA product from reactions after 22, 24, 26 and 28 cycles was examined by ethidium bromide staining. Results
(Fig. 4A) show a linear increase in abundance of the product at each cycle. A comparison of the slopes derived from the increase of total apo B cDNA showed a slight decrease in the treated versus control sample. The decision to use 25 cycles of PCR to assess abundance of apo B mRNA arises from the findings in Fig. 4A. Consistent with the observation in Fig. 4A, RT-PCR amplification of hepatic RNA from 4 rats prior to and following 9 days of treatment with CGS 23425 revealed a slight decrease in total apo B cDNA in treated versus control animals. This decrease is evident by comparing the intensity of the total apo B cDNA in control versus CGS 23425-treated rats (Fig 4B, compare lanes 1–4 with 5–8 in the panel designated total apo B). In contrast, there is no difference in abundance of β-actin mRNA between control and treated rats (Fig. 4B, middle panel). Since total apo B cDNA is a single band, it reflects abundance of both apo B-100 and B-48 mRNAs. To determine whether there was a selective decrease in apo B-100 mRNA, we further analyzed the RT-PCR product using Southern-blot hybridization with a radiolabeled probe that is specific for apo B-100 cDNA. The results (Fig. 4B, lower panel) showed apo B-100 cDNA from the liver of treated rats was decreased by 37% compared with that in the controls.

Since RT-PCR is semi-quantitative, we used direct RNA primer extension to measure abundance of apo B-100 mRNA. Apo B-100 mRNA was significantly decreased in CGS 23425-treated versus

FIGURE 2. CGS 23425 decreases levels of apo B-100 protein. (A) Plasma samples from fat-fed rats treated with 30 µg/kg CGS 23425 for 0, 6 and 9 days were compared with hyperthyroid animals. Each pair of lanes 1 and 2 contain 0·20 µl plasma from age-matched controls, and lanes 3 and 4 contain 0·20 µl plasma from l-T₃ (15 µg/100 g)-treated hyperthyroid rats (left pair), and from CGS 23425-treated animals at 0 days (middle left pair), 6 days (middle right pair) and 9 days (right pair). (B) Graphs showing the relative abundance of apo B-100 or apo B-48 compared with their respective control. Each bar represents the mean and s.e.m. from n=4 animals in each group. *P<0·05, **P<0·01: significantly different from the control (ANOVA).
control rats (Fig 4C, compare B-100 signal in lane 1 with lane 2). The relative abundance of hepatic apo B-100 mRNA was compared with that of the B-48 isoform. In 4 control rats apo B-100 was 48% ± 5% of total apo B mRNA, whereas in 4 CGS 23425-treated rats apo B-100 was only 21% ± 5%. The 27% reduction in abundance of apo B-100 mRNA in treated animals was similar to that observed using RT-PCR (see above). In a hyperthyroid rat (Fig. 4C, lane 4), the level of apo B-100 mRNA decreased to 15%. Conversely, a hypothyroid rat with undetectable levels of L-T₃, had very high levels of apo B-100 that accounted for 90% of the total apo B mRNA (Fig. 4C, lane 3). Together these studies show that like L-T₃, CGS 23425 decreases the hepatic levels of apo B-100 mRNA in rats.

CGS 23425 increases apo B-100 mRNA editing activity

To determine whether changes in hepatic apo B-100 editing activity may account for the higher levels of apo B-48 mRNA in treated rats, the S-100 fraction from hepatocytes was assayed in vitro for apo B-100 editing activity (Kristina et al. 1990, Sowden et al. 1996). Each reaction contained the substrate, apo B-100 RNA fragment 6512–6786, incubated with S-100 extract, concentrated with ammonium sulfate, from the liver of control or treated rats. The product of the reaction was assayed for its content of unedited apo B-100 (CAA) and edited B-48 (UAA) RNA using primer extension. Results (Fig. 5A, compare apo B-48 signal in control and treated lanes (lanes 3 and 4)) showed that the edited, UAA isoform was higher in the extract from treated rats compared with control. Separate repetitions of this reaction using extracts from 3 control and 3 treated animals revealed a relative abundance of the edited UAA product that was 36% ± 6% as compared with 18% ± 4% in treated rats. These studies show that apo B-100 editing activity in liver extract is twofold higher in treated rats compared with that in control rats.

Absence of apobec-1 blocks effect of CGS 23425

If the actions of CGS 23425 require apo B-100 editing activity, then treating cells that lack apobec-1 with the agent should not affect the ratio of apo B-100 to B-48 mRNA. Since human liver does not edit apo B-100 mRNA, we treated human hepatoma Hep G2 cells with CGS 23425 because they have no detectable apobec-1 activity (Lau et al. 1994). Abundance of apo B-100 and B-48 mRNA in control and treated cells was measured using primer extension. Results (Fig. 5B) showed that apo B-100 mRNA levels were the same in both sets of cells. To show that the thyromimetic was indeed active...
(Taylor et al. 1997), we measured the levels of apo AI mRNA in cells treated with 10^{-9} and 10^{-7} M CGS 23425 and detected increased values of 1.4 ± 0.2 and 1.9 ± 0.3, respectively, compared with control (Fig. 5C). These studies further support the idea that, like 1-3T3, the effects of CGS 23425 on apo B-100 mRNA require apobec-1.

![Figure 4](image.png)

FIGURE 4. CGS 23425 decreases levels of apo B-100 mRNA. (A) Left panel shows an ethidium bromide-stained agarose gel of RT-PCR product that reflects total apo B cDNA after 28 cycles of varying input control hepatic RNA from 1 to 3 µg. The right panel shows product reflecting abundance of total apo B cDNA after 22, 24, 26 and 28 cycles in hepatic RNA from a control (top) and CGS 23425-treated (bottom) animal. A graph showing the intensity of each band versus the number of cycles is shown below. (B) Lanes 1–4, RT-PCR products in reactions containing rat apo B-100 primers and total rat hepatic RNA as template from fat-fed control rats; lanes 5–8, fat-fed animals treated with CGS 23425 for 9 days. The top photograph shows an agarose gel of RT-PCR product that reflects total apo B cDNA visualized by ethidium bromide (Et Br) staining, the middle photograph shows an agarose gel containing RT-PCR product showing /afl19826/-actin cDNA in the same samples. The bottom panel shows an autoradiograph of a Southern blot containing the RT-PCR product hybridized with radiolabeled probe that detects only apo B-100 cDNA. The lower portion of (B) contains a left and right graph showing levels of total apo B and apo B-100 cDNA, respectively, relative to the /afl19826/-actin content in both control (open bar) and CGS 23425-treated (hatched bar) rats. Results arise from quantification of two Southern blot analyses of apo B-100 cDNA. *P<0.05: significantly different from the control (ANOVA). (C) Primer extension analysis of both apo B-100 and B-48 signals arising from total hepatic RNA from control (lane 1), CGS 23425-treated (lane 2), hypothyroid (lane 3) and hyperthyroid (lane 4) rats.

Discussion

In this report we have examined the actions of a novel thyromimetic, CGS 23425, on expression of apo B-100 in fat-fed rats. This compound is of clinical interest for the following reasons; (i) it raises the levels of apo AI expression, (ii) at the same time...
it lowers levels of cholesterol and (iii) it has no cardiotoxicity at doses that exceed therapeutic concentrations by 4000-fold (Taylor et al. 1997). Although the beneficial actions of this drug on apo AI and cholesterol metabolism have been examined, whether it had any effect on other parameters of fat metabolism was unknown. Therefore, we initially tested the actions of CGS 23425 on lipid metabolism by measuring postprandial triglyceride levels in vivo (Fig. 1). Results showed the ability of CGS 23425 to inhibit the marked rise in triglyceride levels following an oral fat load. This observation prompted us to ask whether actions of the compound may affect expression of apo B because of its connection with triglyceride metabolism. However, we have not explored the potential effects of CGS 23425 on apo CII, the major pathway for the clearance of post-prandial

FIGURE 5. CGS 23425 increases apo B-100 editing activity in rat hepatic S-100 extract but has no effect on human Hep G2 cells. (A) Results of primer extension analysis of RNA product arising from apo B-100 mRNA editing activity in the S-100 fraction, precipitated with ammonium sulfate, from the livers of control and CGS 23425-treated rats. The contents of each lane are (1) apo B-48 mRNA fragment 6512–6786, (2) apo B-100 mRNA fragment 6512–6786, (3) apo B-100 mRNA fragment 6512–6786 treated with extract from a control and (4) CGS 23425-treated rat. (B) Primer extension analysis of apo B-100 mRNA in samples from Hep G2 cells treated without (lanes 1 and 2, control) and with (lanes 3 and 4) 10^{-7} M CGS 23425. (C) Graph of the relative amounts of apo AI mRNA in Hep G2 cells treated without (control) and with 10^{-9} or 10^{-7} M CGS 23425. Equivalent amounts of total RNA loaded into each lane were assessed by ethidium bromide staining prior to transfer and hybridization with a radiolabeled apo AI cDNA (data not shown). Each bar represents the mean ± s.e.m. of n=4. *P<0.05: significantly different from the control (ANOVA).
triglycerides; further studies exploring this possibility are needed.

Therefore, we examined the effects of CGS 23425 on plasma apo B levels in fat-fed hypercholesterolemic rats treated with a daily single dose of the drug for 6 and 9 days (Fig. 2). The results of these studies showed that CGS 23425 lowered the levels of apo B-100 protein, but had little or no effect on abundance of apo B-48. Not surprisingly, this action of the thyromimetic paralleled those of L-T3 (Davidson et al. 1988a,b). The levels of apo B-100 protein were barely detectable in hyperthyroid rats.

A variety of mechanisms may underlie the ability of CGS 23425 to lower levels of apo B-100 protein. However, we chose to study its effects on apo B-100 mRNA because this drug is a thyromimetic and its parent hormone, L-T3, is known to enhance the editing of apo B-100 mRNA. To examine this effect, the levels of hepatic apo B-100 mRNA in the liver of control and treated rats were measured using RT-PCR and primer extension analysis. Results (Figs 3 and 4) showed significant decreases in the abundance of apo B-100 mRNA following treatment with CGS 23425. As expected, in various thyroid states levels of apo B-100 mRNA correlated inversely with abundance of the hormone. For example, in hypothyroid rats the apo B-100 mRNA was high relative to that of apo B-48 because of low apo B-100 editing activity. This comparison was reversed in hyperthyroid animals. Together, these studies show that, like L-T3, the liver of rats treated with CGS 23425 have a lower content of apo B-100 protein and mRNA.

Although the preceding studies show that CGS 23425 decreases levels of apo B-100, the mechanism for its action(s) remained unknown. CGS 23425 is a thyromimetic and since L-T3 is known to enhance the editing of apo B-100 mRNA, the action of the thyromimetic, CGS 23425, lowers the hepatic levels of apo B-100 protein and mRNA.

In conclusion, the present findings indicate that the thyromimetic, CGS 23425, lowers the hepatic levels of apo B-100 protein and mRNA in apo B-100 mRNA by enhancing a post-transcription editing process that converts cytosine to uridine (Powell et al. 1987, Teng et al. 1993), it is likely that CGS 23425 acts in a similar fashion. The actions of L-T3 require the presence of an editsome, the active part of which is an enzyme called apobec-1 (Teng et al. 1993). The activity of this enzyme is present in the S-100 fraction of hepatocellular extract. Therefore, we assayed apo B-100 editing activity in S-100 extract from the liver of rats treated with and without CGS 23425. Results (Fig 5) showed a twofold increase of apo B-100 editing activity in extracts from treated animals compared with control. To further show the dependence of CGS 23425 activity on apo B-100 editing activity, we treated Hep G2, apobec-1 deficient (Lau et al. 1994) cells with CGS 23425. We postulated that cells with undetectable levels of apobec-1 should not respond to CGS 23425. In keeping with this prediction, the apo B-100 mRNA levels in these cells following treatment with CGS 23425 were the same. These studies show that CGS 23425 has the same effect as L-T3 on apo B-100 gene expression.

Results of experiments summarized above show that the thyromimetic, CGS 23425, has marked effects on apo B-100 expression. The apo B-100 protein in humans is a major component of the endogenously synthesized VLDL and LDL particles (Sigurdsson et al. 1975). High levels of these particles increase the risk of IHD. This fact underlies both the importance and relevance of our findings to clinical medicine (Mack et al. 1996, Lamarche & Lewis 1998). Therefore, compounds that lower levels of apo B-100 are expected to reduce the chance of IHD and thus improve the health of our population.

Previously, we showed that CGS 23425 lowers cholesterol levels and enhances apo AI expression in hyperlipidemic animals (Taylor et al. 1997). These actions of the thyromimetic are mediated by the interaction of CGS 23425 with the nuclear L-T3 receptors. The observations presented here show that the effects of CGS 23425 are not limited to its ability to activate the L-T3 receptor, which in turn modulates gene expression. It is clear that CGS 23425 also has other actions that mimic those of L-T3 including post-transcriptional editing of apo B-100 mRNA. The ability of L-T3 to promote the conversion of apo B-100 mRNA to its B-48 isoform is believed to arise from the effect of the hormone on a component of the editsome that is not apobec-1 (Inui et al. 1994). Since the thyromimetic, CGS 23425, also enhances the conversion of apo B-100 mRNA to apo B-48, the same pathway may be responsible. To be certain, additional studies that detail the role of the L-T3 receptors in mediating effects of CGS 23425 are required.

Although the observations from the present studies (Fig. 5) show clearly that CGS 23425 promotes the conversion of apo B-100 to apo B-48 mRNA in rat liver, the question of whether this information can be extended to humans arises. Since apobec-1 is not expressed in human liver (Driscoll & Zhang 1994), it is unlikely that the drug will affect apo B-100 mRNA levels in human liver. However, it is expected that the data relating to the actions of CGS 23425 in rat liver should parallel its effect in human small intestine where there is abundant expression of apobec-1 (Driscoll & Zhang 1994).

In conclusion, the present findings indicate that the thyromimetic, CGS 23425, lowers the hepatic levels of apo B-100 protein and mRNA in humans.
hyperlipidemic rats. This decrease appears to be mediated, in part, by enhancing the editing of the apo B-100 mRNA. The mechanism for this action of CGS 23425 is different from its nuclear effects that increase apo AI gene transcription. An added effect of the compound is that it decreases the levels of postprandial triglyceride. These studies define the actions of CGS 23425 in rats.

ACKNOWLEDGEMENTS

Funding for this project was provided by the Medical Research Council of Canada (MRC) and the Heart and Stroke Foundation of Canada to N C W W. G M H is the recipient of a post-doctoral fellowship from the Alberta Heritage Foundation for Medical Research. N C W W is the recipient of Scientist awards from the Alberta Heritage Foundation for Medical Research and the MRC.

REFERENCES

Davidson NO, Powell LM, Wallis SC & Scott J 1988a Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RNA. Journal of Biological Chemistry 263 13482–13485.

Davidson NO, Carlos RC & Lukaszewcz AM 1990 Apolipoprotein B mRNA editing is modulated by thyroid hormone analogs but not growth hormone administration in the rat. Molecular Endocrinology 4 779–785.

REVISED MANUSCRIPT RECEIVED 24 July 2000