Identification of Sp1 as the transcription factor for the alternative promoter P2 of the bovine growth hormone receptor gene

H Jiang, C S Okamura, C K Boyd and M C Lucy

Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA

(Requests for offprints should be addressed to M C Lucy, 164 ASRC, Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA; Email: lucym@missouri.edu)

ABSTRACT

Growth hormone receptor (GHR) mRNA variants that differ in the 5'-untranslated regions (5'-UTR) have been isolated in various species. These 5'-UTR variants are generated from the use of alternative promoters and/or alternative splicing. The 5'-UTR 1B is one of the GHR 5'-UTR variants isolated in the bovine but its homologues are also present in other species. The 5'-UTR 1B is a predominant GHR 5'-UTR expressed in many tissues. In the present study, we screened a bovine genomic library and isolated a 1·7 kb bovine GHR genomic sequence including exon 1B and its 5' flanking region from which the GHR 5'-UTR 1B is generated. Using primer extension, two major transcription start sites were mapped in the bovine exon 1B. Transient transfection analysis of the 5' flanking region of exon 1B confirmed its promoter activity (termed P2) in both Hep G2 and BHK-21 cells. Furthermore, analysis of deletion promoter–reporter constructs found that the basal activity of P2 resided in the proximal region of P2. DNase I footprinting analysis and electromobility shift assay (EMSA) identified the ubiquitous transcription factor Sp1 as the binding protein to a GC box-containing DNA element within the proximal P2. Deletion of the GC box greatly reduced the activity of P2 in cell lines. The GC box-containing site also appeared to bind Sp1 in the nuclear extracts from diverse bovine tissues. This suggests that interactions of Sp1 with the GC box-containing element in the proximal region of P2 may be part of the mechanism for the expression of the bovine GHR 5'-UTR 1B in diverse tissues.

Journal of Molecular Endocrinology (2000) 24, 203–214

INTRODUCTION

The growth hormone receptor (GHR) is coded by a single GHR gene (Barton et al. 1989, Godowski et al. 1989). However, GHR mRNA variants that differ in the 5'-untranslated region (5'-UTR) have been isolated in various species (Pekhletsky et al. 1992, O’Mahoney et al. 1994, Adams 1995, Baumbach & Bingham 1995, Domene et al. 1995, Southard et al. 1995, Jiang & Lucy 1998, Lucy et al. 1998, Jiang et al. 1999, Schwartzbauer et al. 1999). The GHR 5'-UTR 1B is one of the eight GHR 5'-UTRs that we previously isolated in the bovine (Jiang & Lucy 1998). It is ubiquitously expressed, with readily detectable levels in liver, fat, muscle, kidney, uterus, mammary gland and adrenal gland (Lucy et al. 1998). Homologues of the bovine GHR 5'-UTR 1B have been isolated in other species including sheep, humans, rats and mice, in which they were named 1B (Adams 1995), V2 (Pekhletsky et al. 1992), GHR2 (Baumbach & Bingham 1995) or V1 (Domene et al. 1995) and L2 (Southard et al. 1995) respectively (for a review, see Edens & Talamantes 1998). In these species, homologues of the bovine GHR 5'-UTR 1B are also expressed as a predominant form of GHR 5'-UTR in many tissues. Similarities in expression pattern and DNA sequence suggest that a common mechanism regulates the expression of the GHR 5'-UTR 1B and its homologues in the bovine and other species.

Growth hormone acts on GHR and stimulates the production of insulin-like growth factor I (IGF-I) (Zhou et al. 1997). In liver, where the highest levels of GHR mRNA are usually detected (Baumbach et al. 1989, Mathews et al. 1989, Hauser et al. 1990, Martini et al. 1997), GH-induced IGF-I enters the blood and accounts for the majority of the circulating IGF-I (Schwander et al. 1983, Yakar...
et al. 1999). In non-hepatic tissues, GH acts on GHR and may stimulate the local production of IGF-I. The hepatic IGF-I was traditionally thought to be the major endocrine factor for postnatal growth (Daughaday & Rotwein 1989) and the local IGF-I was thought to affect tissue growth in a paracrine and/or autocrine manner (Isaksson et al. 1987). However, the importance of hepatic IGF-I to animal growth was challenged by a recent report that mice with a liver-specific deletion of the IGF-I gene grow normally despite a dramatic reduction in blood IGF-I (Yakar et al. 1999). Thus, the role of the local IGF-I in stimulating growth is probably more important than was originally realized. The GHR 5′-UTR 1B represents the majority of the GHR mRNA pool in many tissues. The expression of the GHR 5′-UTR 1B is, therefore, important for the local actions of GH.

The GHR 5′-UTR variants are generated by initiation of transcription from alternative promoters and/or alternative splicing. At least three alternative GHR promoters have been isolated. The GHR promoter 1 (P1), from which the liver-specific GHR 5′-UTR (named 1A in the bovine and ovine, and V1, L1 and V2 in humans, mice and rats respectively; Edens & Talamantes 1998) is initiated, has been characterized in various species (O’Mahoney et al. 1994, Menon et al. 1995, Zou et al. 1997, Schwartzbauer et al. 1998). Promoter 3 (P3), from which a second but less abundant ubiquitous GHR 5′-UTR (named 1C in the bovine, Jiang et al. 1999; V9 in humans, Schwartzbauer et al. 1999; V4 in rats, Domene et al. 1995) is initiated, has been characterized in the bovine (Jiang et al. 1999). Promoter 2 (P2), from which the 5′-UTR 1B is initiated, was first isolated and studied in the ovine (Adams 1995). More recently, sequence for the mouse homologue of the GHR P2 has also been reported (Moffat et al. 1999). In the present study, we isolated and characterized the bovine GHR P2. Our study demonstrated that binding of the ubiquitous transcription factor Sp1 contributed to the activity of the bovine GHR P2.

MATERIALS AND METHODS

Isolation of genomic clones

An 850 bp PCR product corresponding to ~751 to +99 (Fig. 1) was amplified from bovine genomic DNA by using the 5′ primer (5′-ATGACATATTACAAGTGG-3′) and the 3′ primer (5′-GGTTCGAGACCCGCTG-3′) that were designed from the ovine GHR P2 sequence (Adams 1995). The PCR fragment was labeled with 32P by the method of random priming and used as a probe to screen a bovine genomic library in the vector EMBL3. A standard screening procedure was used (Sambrook et al. 1989). Briefly, duplicate lifts from ten plates, each containing 5 × 106 plaque-forming units (pfu) of the library, were hybridized to the probe. Positive plaques from the initial screening were subjected to two additional rounds of amplification and screening using the same probe. Genomic inserts from positive clones of the tertiary screen were then characterized by restriction enzyme digestion mapping and Southern blot analysis. A 2-3 kb XhoI-XhoI genomic fragment containing exon 1B was subcloned into the pBluescript SK(−) vector (Stratagene, Torrey Pines, CA, USA). The subcloned plasmid was named pSK41–1–6. The insert in pSK41–1–6 was sequenced by the method of cycle sequencing (University of Missouri DNA Core, Columbia, MO, USA).

Primer extension analysis

Primer extension analysis was used to map the transcription start site within exon 1B. The experiment was based on published procedures with modification (Sambrook et al. 1989). Briefly, a 21 nucleotide (nt) oligonucleotide primer, 5′-CTGCAAGCAGTCTCCGCTGC–3′, which was complementary to nucleotide +337 to +358 of the bovine GHR DNA sequence (Fig. 1), was labeled at the 5′ end with 32P-γ-ATP (5000 Ci/mmol, DuPont NEN, Boston, MA, USA) and T4 polynucleotide kinase (Promega, Madison, WI, USA). Approximately 5 × 106 c.p.m. of 32P-labeled primer was mixed with 10 µg of bovine total liver RNA (isolated from non-lactating cows) or equal amount of yeast tRNA (as a negative control) and heated at 70 °C for 10 min. The primer–RNA mixture was then added with dNTPs, RNase inhibitor, SuperScript II Reverse Transcriptase (Life Technologies, Gaithersburg, MD, USA), and appropriate buffers for the reverse transcription reaction and incubated at 50 °C for 1 h. Following incubation, the reaction was subjected to phenol/chloroform extraction and ethanol precipitation. The extension products were resolved by electrophoresis on a 6% denaturing polyacrylamide gel containing 8 M urea. A DNA sequencing product and a 100 bp DNA ladder were run in parallel as references to determine the size of the primer-extended products. The gel was dried and exposed to X-OMAT AR film (Kodak, Rochester, NY, USA) with an intensifying screen.
Figure 1

The DNA sequence for the bovine GHR exon 1B and its 5' flanking region. A 2.3 kb genomic fragment of the bovine GHR gene was cloned from a bovine genomic library and sequenced completely. The complete 2.3 kb sequence was deposited in GenBank under accession number AF046861. The 1.5 kb sequence containing the exon 1B (indicated in bold) and its 5' flanking region is presented. Exon 1B contains two major transcription start sites (indicated with asterisks). Positions of nucleotides are numbered relative to the most 5' major start site that was designated as +1. Indicated restriction digestion sites for HindIII, NcoI, NotI, SmaI, SacII and PstI were used for constructing the promoter–reporter plasmids. The GC box is indicated (box).
Plasmid construction and deletion

All plasmid constructs were made by inserting the GHR genomic DNA fragment into the polycytosing sites upstream from the firefly luciferase gene in the promoter-less plasmid pGL3-Basic (pGL3B, Promega). A 1.5 kb XhoI–NcoI fragment, corresponding to the 5′ flanking region from –1217 to +300 (relative to the transcription start site +1 in Fig. 1), was digested from pSK41–1–6, blunted at the NcoI site, and then inserted into the XhoI and blunted HindIII sites in pGL3B. This construct was designated 1B(–1217–300)–GL3. To construct plasmid 1B(–1217/–12)–GL3, in which the insert had a 311 bp deletion from the 3′ end compared with that in construct 1B(–1217/+300)–GL3, a SacI-linked 5′ primer 5′–GCTGGAGCTCCAGCCGCGTGGGC–3′ specific for the vector sequence (SacI site underlined) and a NheI site-linked 3′ primer 5′–TTCCGCTAGCATCTGGGCTGCGCGGCT CCT–3′ specific for the GHR sequence (NheI site underlined) were used to amplify the 1217 to +300 fragment from pSK41. The inserts in constructs 1B(–750/–12)–GL3, 1B(–191/–12)–GL3 and 1B(–104/–12)–GL3 contained serial 5′ deletions and were generated using similar PCR procedures.

Construct 1B(–104/–12delGC)–GL3 had a deletion of the sequence GGGCGG (–80 to –75 in Fig. 1) compared with construct 1B(–104/–12)–GL3. The deletion was made by PCR-based site-directed mutagenesis (Fisher & Pei 1997). Briefly, 30 cycles of PCR were performed at 96°C for 10 s (denaturation), 55°C for 1 min (annealing) and 72°C for 5 min (extension) with a forward primer 5′–AGAGGAAGGAAAGTCCTTG–3′ (–74 to –55 in Fig. 1), a reverse primer 5′–ACCCCTGTTCCTCAAAAGGA–3′ (–81 to –100 in Fig. 1), plasmid 1B(–104/–12)–GL3 as a DNA template, 1 unit of Taq DNA polymerase, and 0·01 unit of Tli DNA polymerase. The PCR products were gel-purified, phosphorylated, circularized and cloned using standard procedures.

The insert–vector junctions and deletions in each plasmid were verified by DNA sequencing. Large-scale plasmid DNA purification was done by using the Qiagen Maxiprep kit (Qiagen, Valencia, CA, USA).

Cell culture and transfection

Approximately 3 × 10⁵ Hep G2 cells or 1 × 10⁵ BHK-21 cells (purchased from ATCC, Rockville, MD, USA) were plated onto 12-well plates, maintained in Minimum Essential Medium (MEM) containing L-glutamine, 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin (Sigma, St Louis, MO, USA) at 37°C under 5% CO₂. Following a 24 h incubation, 2 µg promoter–reporter construct and 0·02 µg pRLSV-40 plasmid were transfected in each well using the calcium phosphate method. The pRLSV-40 plasmid was co-transfected as the transfection efficiency control. Twelve hours after transfection, cells were washed with PBS and cultured in fresh medium for 36 h prior to luciferase assay. Each construct was transfected in duplicate in three or more experiments. In each experiment, the pGL3B plasmid was also transfected in separate wells in order to measure the basic activity of the promoter-less plasmid.

Luciferase activity assay

Following 48 h of culture after transfection, cells were washed twice with PBS and lysed in 200 µl Passive Lysis Buffer (Promega) at room temperature for 15 min. Activities of the firefly luciferase and Renilla luciferase in the cell lysate were measured sequentially by using the Dual-Luciferase Reporter Assay (DLR) system (Promega) essentially according to the manufacturer’s instructions. The light output from the firefly luciferase or the Renilla luciferase was recorded for 15 s following a 3 s pre-measurement delay using a TD-20e Luminometer (Tuner Designs, Sunnyvale, CA, USA).

The variation in transfection efficiency was normalized by dividing the firefly luciferase activity with the Renilla luciferase activity. The transcriptional activity of the promoter–reporter construct was presented as relative values to that of the pGL3B plasmid. Data were expressed as mean ± s.e. of values from three or more independent experiments and tested for treatment differences by analysis of variance.

Extraction of nuclear proteins

The bovine liver, kidney and brain tissues were dissected from adult non-lactating cows at slaughter and transported to the laboratory on ice within 30 min. Extraction of nuclear proteins from the bovine tissues was performed essentially as described (Gorski et al. 1986) with the modification that 1 ml of protease inhibitor cocktail (Sigma) was added to the homogenization buffer for 20 g of tissue. Ex extractions of nuclear proteins from cultured Hep G2 and BHK-21 cells were carried out essentially as described (Ausubel et al. 1994). The
protein concentration of nuclear extracts was determined by the Lowry assay.

DNase I footprinting analysis

The DNase I footprinting analysis was done as described previously (Lakin 1994). Briefly, the DNA fragments containing the 5′ flanking region (nt −191 to −12) of the bovine exon 1B were labeled at the 5′ end of either the sense strand or the antisense strand with T4 polynucleotide kinase and 32P-γ-ATP. The probe (2 × 10^4 c.p.m., approximately 0.06 ng) was incubated with the recombinant human Sp1 (Promega) on ice for 30 min in 1× binding buffer (50 mM Tris–HCl, 100 mM KC1, 12.5 mM MgCl2, 1 mM EDTA, 20% glycerol, 1 mM DTT, pH 8.0) containing 2 μg of poly d(A-T) (Sigma). The probe–protein mixture was then added with 50 μl of Cu2+/Mg2+ (5 mM CaCl2, 10 mM MgCl2) and digested with 0.01 U/μl DNase I (Promega) at room temperature for 1 min. The DNase I digestion was terminated by adding 90 μl of stop buffer (200 mM NaCl, 30 mM EDTA, 1% SDS, 40 μg/ml yeast tRNA). The reaction was then extracted with 200 μl of phenol–chloroform–isoamyl alcohol and precipitated with ethanol followed by electrophoresis on a 6% polyacrylamide and 8 M urea sequencing gel in 1× TBE buffer (100 mM boric acid, 2 mM EDTA and 100 mM Tris–HCl, pH 8.4). The (G+A) Maxam–Gilbert sequencing ladders were prepared as described previously (Maxam & Gilbert 1980) and served as size markers. The gel was dried and subjected to autoradiography as described above.

Electromobility shift assay (EMSA)

The double-stranded oligonucleotide corresponding to the DNA fragment −87/−66 was generated by annealing complementary oligonucleotides in 10 mM Tris–HCl (pH 8.0), 1 mM EDTA and 5 mM MgCl2 by heating to 95°C for 10 min and slowly cooling to 25°C over 1 h. Both ends of the oligonucleotide were end-labeled with 32P using T4 polynucleotide kinase and 32P-γ-ATP. Approximately 2 × 10^4 c.p.m. (equal to 0.02 ng) probe was added to a mixture containing 5 μg nuclear extract, 2 μg of poly d(A-T), 2% Ficoll 400 and 1 × binding buffer (as described before) in a total volume of 20 μl (the probe was added last). The binding reactions were further incubated on ice for 45 min and analyzed by electrophoresis on a native polyacrylamide gel in 0.5 × TBE buffer. For competition or super-shift assays, the nuclear extract was incubated with the competitor oligonucleotides (unlabeled oligonucleotide or the Sp1 consensus oligonucleotide, Promega) or antibodies (anti-Sp1 and anti-Sp3, Santa Cruz Biotechnology, Santa Cruz, CA, USA) on ice for 2 h prior to the addition of the labeled probe.

RESULTS

Genomic sequence

Positive genomic clones were isolated by screening a total of 5 × 10^5 pfu of a bovine genomic library with an exon 1B-specific probe. Subcloning of a 2.3 kb XhoI–XhoI genomic fragment in the pBluescript SK(−) plasmid and subsequent sequencing revealed that the 2.3 kb fragment was composed of exon 1B, the 5′ flanking region of exon 1B, and a 0.6 kb downstream region from exon 1B. The sequence of this 2.3 kb fragment has been deposited in GenBank under accession AF046861. The 500 bp region from the 3′ end, containing exon 1B, has 75% GC. Sequence comparison revealed that the 1.7 kb bovine GHR sequence was 95% identical to the ovine GHR sequence (GenBank accession S78252) and 90% identical to the human GHR sequence (GenBank accession AJ002175). Restriction site mapping of the 1.7 kb bovine GHR DNA sequence identified cleavage sites for common restriction enzymes such as HindIII, NcoI, NotI, SacII, SmalI and PstI. These sites were confirmed by restriction enzyme digestion of pSK41–1–6.

Transcription start sites in exon 1B

Based on a GenBank search, the reverse primer complementary to nt +337 to +358 (Fig. 1) of the bovine GHR DNA sequence was not complementary to other known DNA sequences. The primer extension analysis generated two major extended products that were 358 and 349 nt in length (Fig. 2). These two extended products corresponded to transcription initiation from two start sites, designated +1 and +10, in exon 1B of the bovine GHR gene (Fig. 1). Sequence analysis of the 5′ proximal region of exon 1B using the MatInspector program (Heinemeyer et al. 1999) did not reveal a consensus TATA box that could define a transcription start site. However, the sequence surrounding the two start sites contained several sequence elements (CCAGATG, −17 to −11; TGAGAGT, −12 to −6; TGACACG, −6 to +1; CAACTCC, +5 to +11; CAACTCC, +12 to +18) that are similar to the consensus sequence (P3P4A+1T/AP3P5) for initiator element (Inr), a
DNA sequence that defines the transcription start site in many TATA-less promoters (Javahery et al. 1994).

Functional analysis of the 5′ flanking region of exon 1B

The possibility that the 5′ flanking region of exon 1B functioned as a promoter (designated P2) was suggested by the high level of GHR 1B mRNA expression in vivo. The transcriptional activity of P2 was examined in Hep G2 and BHK-21 cells. We initially tested the 1·5 kb fragment from the 5′ end (−1217 in Fig. 1) of pSK41–1–6 to nt +300 in exon 1B (Fig. 1). As shown in Fig. 3, 1B(−1217/+300)-GL3 had a sixfold greater activity than did the promoter-less plasmid pGL3B (P<0·01). To identify the minimal regions that are required for...
the basal promoter activity of P2, we next examined the transcriptional activity of various deletion constructs. Construct 1B(-1217/ -12)-GL3 did not include the 300 bp downstream region from the transcription start site compared with construct 1B(-1217/+300)-GL3. Following transfection into cells, construct 1B(-1217/ -12)-GL3 maintained a similar level of luciferase activity compared with construct 1B(-1217/+300)-GL3 (P>0.05) (Fig. 3), suggesting that the 300 bp exon 1B region was not important to the transcriptional activity of P2. Constructs 1B(-750/ -12)-GL3, 1B(-191/- 12)-GL3, and 1B(-104/-12)-GL3 had sequential deletions from the 5' end. Compared with 1B(-1217/-12)-GL3, construct 1B(-750/-12)-GL3 showed lower activity in BHK-21 cells (P<0.01) but maintained a similar level of activity in Hep G2 cells (P>0.05) (Fig. 3). However, further deletion of the 560 bp region between -750 and -191 resulted in a dramatic increase in the transcriptional activity of construct 1B(-191/ -12)-GL3 in both cell types (P<0.01) (Fig. 3). This result suggested that the 560 bp region between -750 and -191 may contain a negative element(s) for initiating transcription in exon 1B. Further deletion of an 87 bp region from the 5’ end did not cause any significant reduction (P>0.05) of transcriptional activity in construct 1B(-104/- 12)-GL3. Construct 1B(-104/-12)-GL3 conferred a 13- and 9-fold activity in Hep G2 and BHK-21 cells, respectively, compared with the promoter-less plasmid pGL3B (P<0.01) (Fig. 3). These results indicated that the basal promoter activity of P2 resides in the 93 bp proximal 5’ flanking region.

Identification of a Sp1 binding site within nt -87 to -66 of P2

Computer analysis for transcription factor binding sites using the TFSEARCH program (at threshold score of 80.0) (Heinemeyer et al. 1999) and the MatInspector program (at optimized matrix similarity) revealed several putative protein binding sites including Ik2, STAT, NGFIC, ETS, C-Ets and Sp1 within the 5’ proximal region -104/-12. Among these putative binding proteins, Sp1 was of particular interest because Sp1 is a ubiquitous transcription factor interacting with many constitutive promoters (Jones et al. 1988, Latchman 1995). Therefore, Sp1 was the most likely candidate binding protein that activates the GHR promoter P2 in various tissues. To test this possibility, a DNase I footprinting analysis was performed to determine if the putative Sp1 binding site bound to Sp1 protein. A DNase I footprint was observed when the recombinant human Sp1 protein was incubated with the 5’ proximal DNA fragment (Fig. 4). The footprint spanned nt -87 to -66 (-87/-66). This region includes a GC box (GGGCGGGCGCGACG-3') that represents a core binding sequence for Sp1. We next performed an EMSA analysis to determine if the same region bound to nuclear proteins isolated from Hep G2 and BHK-21 cells and to determine if the binding proteins from the nuclear extracts were indeed Sp1. Incubation of a 32P-labeled double-stranded DNA oligonucleotide corresponding to the -87/-66 region with nuclear proteins extracted from Hep G2 and BHK-21 cells generated a distinct DNA–protein binding complex (Fig. 5). The specificity of this complex was demonstrated by the ability of an excess of the same unlabeled oligonucleotide to compete effectively with the probe for binding the nuclear protein. Addition of an excessive amount of the unlabeled Sp1 consensus oligonucleotide (5’-ATTCGATCG GGGCGGGGCGACG-3') also effectively competed with the probe for binding the nuclear protein. This suggested that Sp1 was present in the binding complex. The presence of Sp1 in the DNA–protein complex was further demonstrated by supershift experiments, in which anti-Sp1 antibodies retarded the DNA–protein complex formed with both Hep G2 and BHK-21 nuclear extracts (Fig. 5). The GC box is recognized by Sp1 as well as other members of the Sp1-family, i.e. Sp3, Sp4, BTEB and BTEB2 (Lania et al. 1997). However, the nearly complete shift of the DNA–protein complex by anti-Sp1 antibodies indicated that the DNA–protein complex was formed primarily with Sp1. This was further supported by the observation that anti-Sp3 antibodies had no effect on the mobility of the binding complex (Fig. 5).

Requirement of the Sp1 binding site for the transcriptional activity of P2

The functional importance of the Sp1 binding site to the promoter activity of P2 was demonstrated by deleting the GGGCGG sequence from the -104/-12 fragment and determining the transcriptional activity of the deleted fragment in transient transfection analysis. Deletion of the GC box abolished the binding of Sp1 to the -104/-12 fragment (demonstrated by DNase I footprinting analysis, data not shown). Deletion of the GC box significantly decreased the luciferase activity of deletion construct 1B(-104/-12delGC)-GL3 in both Hep G2 and BHK-21 cells, compared with the intact construct 1B(-104/-12)-GL3 (P<0.05) (Fig. 6). These results suggest that the -87/-66
site within P2 contributes to the promoter activity through interactions with the nuclear Sp1 protein.

Binding of the GC box-containing sequence by nuclear proteins in bovine tissues

The above experiments identified the interaction of Sp1 with the GC box-containing DNA element within the bovine GHR P2 in cell lines. To determine whether the GC box DNA element found *in vitro* also bound to identical nuclear proteins in bovine tissues, we did additional EMSA analyses. The EMSA analyses of the GC box-containing DNA fragment in the bovine nuclear protein extracts demonstrated that the 22 bp −87/−66 DNA fragment formed a DNA–protein complex with the same mobility across different nuclear extracts (Fig. 7). The presence of Sp1 protein in the complexes was indicated by the competition of a Sp1 consensus oligonucleotide with the DNA fragment of −87/−66 for binding to the nuclear protein (Fig. 7). The DNA–protein complexes formed from nuclear protein of the bovine tissues and cell lines migrated with the same mobility (data not shown). Therefore, nuclear proteins in the bovine tissues and the non-bovine cell lines were either identical or closely related proteins. Furthermore, the observation of DNA–protein complexes in diverse bovine tissues (liver, kidney and brain) that express GHR 5′-UTR 1B suggests that these binding proteins may be ubiquitous in the bovine.

DISCUSSION

Numerous genes use multiple promoters to initiate transcription (Schibler & Sierra 1987, Ayoubi & Van De Ven 1996). Multiple variants of 5′-UTR have been isolated for the GHR mRNA in various species (Pekhletsky et al. 1992, O’Mahoney et al. 1994, Adams 1995, Baumbach & Bingham 1995, Domene et al. 1995, Southard et al. 1995, Jiang & Lucy 1998, Jiang et al. 1999, Schwartzbauer et al. 1999). Each 5′-UTR could be generated by transcription from an independent promoter. In the present study, we demonstrated that the bovine GHR 5′-UTR 1B is initiated from an alternative

FIGURE 4. DNase I footprinting analysis of the 5′ flanking region of exon 1B in the presence of Sp1. A DNA fragment corresponding to the 5′ flanking region −191/−12 of exon 1B (see Fig. 1 for locations) was end-labeled on the antisense strand using T4-polynucleotide kinase and 32P-γ-ATP. Approximately 2 × 10⁴ c.p.m. (corresponding to 0.06 ng) probe was partially digested with DNase I in the absence (−) or presence of 1, 2 and 4 footprint units of the recombinant human Sp1 protein (Promega). The (G+A) lanes contain a Maxam–Gilbert sequencing ladder of the same DNA fragment. The vertical line beside the autoradiograph indicates the DNase I protected site, which corresponds to the nt −87 to −66 sequence in Fig. 1. The same site was footprinted when the sense strand was analyzed (autoradiograph not shown).
promoter named P2 within the bovine GHR gene. While our study of the bovine P2 confirmed the findings of a previous study of the ovine GHR gene (Adams 1995), our study of the bovine P2 identified, for the first time, the ubiquitous transcription factor Sp1 as the binding protein to the bovine GHR P2.

The promoter activity of a DNA fragment is generally assessed by its ability to direct reporter gene expression in cultured cells. In the present study, we fused the 5′/p9flanking region of the bovine GHR exon 1B with a luciferase reporter gene in the promoter-less plasmid pGL3B. Significant luciferase activity was observed when the promoter–reporter plasmids were transfected into the human hepatoma cell line Hep G2 and the baby hamster kidney cell line BHK-21. These in vitro results with cell lines that differ in both tissue and species origins support the previous in vivo studies of the GHR 5′-UTR 1B that showed a ubiquitous expression pattern (Adams 1995, Domene et al. 1995, Southard et al. 1995, Lucy et al. 1998).

The promoter activity of a DNA fragment is generally assessed by its ability to direct reporter gene expression in cultured cells. In the present study, we fused the 5′ flanking region of the bovine GHR exon 1B with a luciferase reporter gene in the promoter-less plasmid pGL3B. Significant luciferase activity was observed when the promoter–reporter plasmids were transfected into the human hepatoma cell line Hep G2 and the baby hamster kidney cell line BHK-21. These in vitro results with cell lines that differ in both tissue and species origins support the previous in vivo studies of the GHR 5′-UTR 1B that showed a ubiquitous expression pattern (Adams 1995, Domene et al. 1995, Southard et al. 1995, Lucy et al. 1998).

The bovine GHR exon 1B and its proximal 5′ flanking region have a high GC content and lack a TATA box. These features are common to many housekeeping gene promoters (Dynan 1986). Not surprisingly, the same structural features in the bovine GHR gene were found in the respective regions of the ovine (Adams 1995), human (GenBank accession AJ002175) and mouse (GenBank accession AF120480) GHR genes. Consistent
with the similarity between the 5’ flanking sequences of exon 1B in the GHR genes, the transcription start sites mapped in the bovine and ovine exon 1B were within a few nucleotides (Adams 1995). The mouse start site was not mapped to the same region, perhaps because of sequence differences between the mouse GHR P2 and the bovine and ovine P2 (Moffat et al. 1999). Two major bovine start sites in exon 1B were mapped in the present study and multiple start sites were also identified in the ovine exon 1B (Adams 1995). Mapping of multiple transcription start sites in both the bovine and the ovine sequences is consistent with the lack of a consensus TATA box in the 5’ proximal region of exon 1B. In some TATA-less promoters, the transcription initiation site is determined by a DNA element called transcriptional initiator (Inr), which usually surrounds the transcriptional start site (Javahery et al. 1994). Sequences that are similar to the consensus Inr sequence were found around the mapped transcription start sites in the bovine, ovine, and mouse GHR genes. An interesting question that remains to be answered is whether the transcription initiation sites are dictated by these Inr-like sequences.

Functional analysis of the 5’ flanking region of exon 1B identified two major regulatory regions. The region between −750 and −191 contained negative element(s) for the transcription of exon 1B, whereas the 93 bp proximal region between −104 and −12 contained positive regulatory elements necessary for basal promoter activity. DNase I footprinting analysis and EMSA of the 5’ proximal region identified a DNA element (GC box containing site) that binds Sp1. The functional importance of the interaction between Sp1 and the GC box to the activity of P2 was demonstrated by deletion analysis. Deletion of the GC box decreased the activity of P2 in cells, presumably by preventing Sp1 binding. Sp1 is known as a ubiquitous transcription factor that transactivates many constitutive promoters (Latchman 1995, Jones et al. 1988). We demonstrated that nuclear extracts from diverse bovine tissues also bound the GC box. Therefore, interaction of Sp1 with the GHR promoter P2 is part of the mechanism for the expression of the bovine GHR 5’-UTR 1B in various tissues.

Deletion of the GC box only partially abolished the transcriptional activity of the −104/−12 region. This suggests that the maximal transcriptional activity of the fragment involves other regulatory elements. Using similar techniques, we identified a second DNA element containing a CCAAT box within nt −61 to −31 and this CCAAT box-containing site appeared to bind ubiquitous nuclear proteins. We tested for the ubiquitous CCAAT box binding factors CTF/NF-1 and NF-Y by using supershift analysis but found that neither protein was part of the DNA–protein complex. We are currently trying to identify the binding protein to this second DNA element by testing other candidate transcription factors as well as by using the yeast one-hybrid system. Another regulatory region of the GHR P2 may reside in the upstream region of P2 (nt −750 to −191). Deletion of this region increased the promoter activity of the 5’ flanking region, suggesting that this region contains repressor elements for P2 activity. The binding protein(s) to this region remains to be characterized.

Although the 5’-UTR 1B initiated from P2 is ubiquitously expressed, GHR mRNA amounts in many tissues change in response to hormonal and physiological statuses (Harvey et al. 1995, Bennett et al. 1996, Florini et al. 1996, Li et al. 1996, Nguyen et al. 1996, Chen et al. 1997, Jux et al. 1998). Changes in the total GHR mRNA may at least in part result from the changes in the activity of P2 because the GHR 1B mRNA represents the majority of the GHR mRNA pool. Although Sp1 has traditionally been characterized as a constitutive transcription factor, increasing evidence has indicated that Sp1 binding and transactivation can be modulated by many hormones and growth factors (Jensen et al. 1995, Merchant et al. 1995, Porter et al. 1997, Ahlgren et al. 1999).
Identification of Sp1 as one of the transcription factors for the GHR P2 allows us to ask whether Sp1 mediates the hormonal regulation of the GHR P2 activity and therefore the levels of the GHR 1B mRNA. The changes in GHR 1B mRNA that are in part controlled by Sp1 as well as other transcription factors may ultimately determine the GH-responsiveness of most tissues.

REFERENCES

Baumbach WR & Bingham B 1995 One class of growth hormone (GH) receptor and binding protein messenger ribonucleic acid in rat liver, GHR1, is sexually dimorphic and regulated by GH. *Endocrinology* **136** 749–760.

Jiang H & Lucy MC 1998 Isolation of divergent 5′-untranslated regions of the bovine growth hormone receptor mRNA. *Journal of Animal Sciences* **76** (Suppl 1) 128.

RECEIVED 26 March 1999

M r t h w s L S , E n b e r g B & N o r s t e d t G 1989 Regulation of rat growth hormone receptor. Journal of Biological Chemistry 264 9905–9910.

M e n o n R K , S t e p h a n D A , S i n g h M , M o r r i s S M J r & Z o u L 1995 Cloning of the promoter-regulatory region of the murine growth hormone receptor gene. Journal of Biological Chemistry 270 8851–8859.

M e n s f A & T a l a m a n t e s F 1999 Structure and expression of the mouse growth hormone receptor/growth hormone binding protein gene. Journal of Molecular Endocrinology 23 33–34.

N g y e n A P , C h a n d o r k a r A & G u p t a C 1996 The role of growth hormone in fetal mouse reproductive tract differentiation. Endocrinology 137 3659–3666.

O’M a h o n e y J V , B r a n d o n M R & A d a m s T E 1994 Identification of a liver-specific promoter for ovine growth hormone receptor. Molecular and Cellular Endocrinology 101 129–139.

P e k h l e t s k y R I , C h e r n o v B K & R u b s t o v P M 1992 Variants of the 5'-untranslated sequence of human growth hormone receptor mRNA. Molecular and Cellular Endocrinology 90 103–109.

P o r t e r W , S a v i l l e B , H o i v i k D & S a f e S 1997 Functional synergy between the transcription factor Sp1 and the estrogen receptor. Molecular Endocrinology 11 1569–1580.

S a m b r o o k J , F r i t s c h E F & M a n i a t i s T 1989 Molecular Cloning: a Laboratory Manual, 2nd edn, pp 2·108–2·125. New York: Cold Spring Harbor Laboratory Press.