Oestrogens regulate pituitary α2,3-sialyltransferase messenger ribonucleic acid levels in the female rat

P Damián-Matsumura1,2, V Zaga1,2, A Maldonado2, C Sánchez-Hernández2, C Timossi1,3 and A Ulloa-Aguirre1

1Department of Reproductive Biology, Instituto Nacional de la Nutrición Salvador Zubirán, Mexico
2Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
3Department of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de México, México DF, Mexico

(Requests for offprints should be addressed to A Ulloa-Aguirre, Department of Reproductive Biology, Instituto Nacional de la Nutrición SZ, Vasco de Quiroga No. 15, Tlalpan 14000, México DF, Mexico)

(P Damián-Matsumura, A Maldonado, C Timossi and A Ulloa-Aguirre are now at Research Unit in Reproductive Medicine, Hospital de Gineco-obstetricia no. 4, Instituto Mexicano del Seguro Social, Mexico DF, Mexico)

ABSTRACT

Follicle-stimulating hormone (FSH) is synthesized by the anterior pituitary gland in multiple molecular forms. Increased acidic/sialylated FSH charge isoforms are associated with conditions characterized by a low oestrogen output. In the present study, we analysed the dynamics of the changes in mRNA levels of the enzyme Galβ1,3[4]GlcNAc α2,3-sialyltransferase (2,3-STase) (one of the enzymes that incorporate sialic acid residues into the FSH molecule) in intact and ovariectomized rats. The anterior pituitaries of 4-day regularly cyclic adult female Wistar rats were obtained at 1000 h on the days of pro-oestrus (P), oestrus (O), dioestrus 1 (D1) and dioestrus 2 (D2), at 0200 h, 1400 h, 1800 h and 2200 h on D1, at 1800 h on day of O and at 1000 h after 7, 14, 21, 28 and 45 days of oophorectomy performed on the morning of P. Total RNA was isolated from each gland and the 2,3-STase levels were measured by Northern blot hybridization analysis employing a 346-base pair cDNA probe encoding for a non-conserved amino acid sequence of the catalytic domain of the enzyme. Maximal levels of the enzyme mRNA were detected at 1000 h on D1; thereafter, they progressively decreased by 60% during the ensuing 24 h, reaching the lowest concentration values (26% of the maximally observed level on D1) at 1000 h on day of P and remaining unchanged during the morning of O. Administration of the potent oestradiol receptor antagonist ICI 182,780 at 1000 h on D1 completely reverted the time-dependent decrease in 2,3-STase mRNA levels observed during the afternoon of D1, whereas oestradiol benzoate administered at 1000 h on day of O significantly reduced the enzyme mRNA levels (to 21% of the levels detected in vehicle-treated controls). In ovariectomized rats, the α2,3-STase mRNA progressively increased from day 21 to day 45 post castration. Administration of oestradiol benzoate on day 28 after oophorectomy significantly reduced the 2,3-STase mRNA levels (to 36% of the levels detected in vehicle-injected controls); ICI 182,780 partially counteracted this oestradiol-mediated effect. The dynamics of these changes in 2,3-STase mRNA levels partially correlated with changes in the relative abundance of the FSH charge isoforms separated by preparative chromatofocusing of anterior pituitary extracts, particularly in glands obtained during the morning of P and O. These data demonstrate for the first time that pituitary 2,3-STase is a hormonally-regulated enzyme and that the changes in transcription and/or stability of its mRNA may be involved, in part, in the post-translational processing of the FSH molecule during certain physiological conditions.

INTRODUCTION

Follicle-stimulating hormone (FSH), one of the signals produced by the anterior pituitary (AP) gland, is involved in the regulation of several essential reproductive processes occurring at the gonadal level. This gonadotrophin is a heterodimer composed of two glycosylated subunits, α and β
(Pierce & Parsons 1981, Gharib et al. 1990). Each subunit of FSH exhibits two N-linked glycosylation sites located at positions Asn52 or 56 and Asn78 or 82 in FSHβ and Asn6, 7 or 13 and Asn23, 24 or 30 in FSHα (Fiddes & Goodman 1979, Pierce & Parsons 1981, Esch et al. 1986, Watkins et al. 1987, Gharib et al. 1989). Glycosylation and processing of incorporated oligosaccharides involve a complex biosynthetic pathway which, after initiation in the rough endoplasmic reticulum, continues through the Golgi apparatus until the mature gonadotrophin is transported to secretory granules (Baenziger & Green 1988). As in other related glycoprotein hormones (luteinizing hormone (LH), chorionic gonadotrophin and thyrotrophin (TSH)), oligosaccharide structures on FSH are highly variable and play a key role in determining the biological properties of the hormone (Wilson et al. 1990, Ulloa-Aguirre et al. 1995, Ulloa-Aguirre & Timossi 1998). In FSH, most oligosaccharide chains are dibranched structures with either both ends terminating in a negatively charged group (GalNAc-SO₄²⁻ or Gal-sialic acid) or one branch terminating in a negatively charged residue and the other in noncharged mannose. Dibranched oligosaccharides, with and without a bisecting GlcNAc moiety linked to the β-linked core mannose residues, and tribranched oligosaccharides of different types, but containing terminal sialic acid residues are also found (Green & Baenziger 1988, Stockell Hartree & Renwich 1992). Variations in the structure and distribution of sialylated and, to a lesser extent, sulphated Asn-linked oligosaccharides constitute the main chemical basis for FSH isofrom formation and the extensive charge heterogeneity exhibited by this particular gonadotrophin (Ulloa-Aguirre et al. 1995).

Multiple FSH charge isofroms have been isolated from AP extracts, serum and urine of several animal species including man (Chappel et al. 1983, Ulloa-Aguirre et al. 1986, 1988, 1992a, 1995, Simoni et al. 1994, Stanton et al. 1996). The more acidic/sialylated variants exhibit longer plasma half-life but lower receptor binding activity and in vitro biological potency than the less acidic counterparts (Ulloa-Aguirre et al. 1984, 1992a, Cerpa-Poljak et al. 1993, Zambrano et al. 1996). The distribution of the intrapituitary and secreted FSH charge isofroms changes during specific physiological conditions (Padmanabhan et al. 1988, Wide 1989, Wide & Bakos 1993, Ulloa-Aguirre et al. 1995, Zambrano et al. 1995), thus indicating that FSH heterogeneity is a hormonally regulated phenomenon. In terms of endocrine regulation, there is growing evidence suggesting that hypothalamic and gonadal inputs (gonadotrophin-releasing hormone (GnRH) and/or sex steroids) may be involved in modulating the molecular nature of the hormone and therefore its biological attributes (Ulloa-Aguirre et al. 1995). For example, it has been shown that the release of less sialylated, short-lived FSH glycoforms is increased in conditions in which the AP is exposed to high levels of oestrogens such as the periovulatory phase of the menstrual cycle or after long-term oestradiol administration to hypogonadal subjects (Galle et al. 1983, Padmanabhan et al. 1988, Wide & Bakos 1993, Wide & Naessén 1994, Zambrano et al. 1995). However, the molecular mechanisms responsible for the changes in sialylation of the FSH molecule during these and other physiological states remain unclear. Since the oestrous cycle represents an ordered sequence of changing hormonal events during which the pituitary gland is cyclically exposed to variable amounts of gonadal and hypothalamic hormones, we tested the hypothesis that the mRNA levels of rat Galβ1,3GlcNAc a₂,3-sialyltransferase (2,3-STase) (the enzyme that forms the NeuAcα₂,3Galβ1,3GlcNAc sequence typically found to terminate complex type N-linked oligosaccharide chains such as those present in FSH (Weinstein et al. 1982, Baenziger & Green 1988, Kleen & Berger 1993)) changes during the oestrous cycle and that oestrogens play a key role in the regulation of this enzyme mRNA levels.

MATERIALS AND METHODS

Adult Wistar female rats were maintained in groups of 5 animals under light-controlled conditions (lights on from 0500 to 1900 h). The body weights of the rats were between 250 and 300 g. Daily vaginal smears were obtained between 0900 h and 1100 h, and no animal was used until it had shown at least three consecutive 4-day oestrous cycles. Rats were decapitated at 1000 h on the days of pro-oestrus (P), oestrus (O), dioestrus 1 (D1) and dioestrus 2 (D2), at 0200 h, 1400 h, 1800 h and 2200 h on D1, at 1800 h on the day of O and at 1000 h after 7, 14, 21, 28 and 45 days of oophorectomy performed on the morning of P. The anterior pituitaries were dissected free from the posterior pituitaries, rapidly removed and immediately frozen at −70 °C until extraction of total cytoplasmic RNA or soluble proteins.

RNA extraction and Northern blot hybridization analysis

Total RNA from rat brain and anterior pituitary glands was isolated by the single-step acid
guanidinium thiocyanate/phenol/chloroform extraction method (Chomczynski & Sacchi 1987) using the TRIZol reagent (Gibco, Gaithersburg, MD, USA) and following the instructions supplied by the manufacturer. For Northern blot hybridization analysis, total RNA (~15 µg) was fractionated on 1·0% denaturating agarose gel and transferred to Zeta Probe GT membranes (BioRad, Hercules, CA, USA). After UV crosslinking and prehybridization, the membranes were hybridized during 16–24 h at 65 °C with the 2,3-STase cDNA probe radio-labelled with 32P using a random primer labelling kit (Gibco). The filters were then washed at high stringency and autoradiographed on X-OMAT-AR film (Eastman Kodak). Each blot was stripped and rehybridized with a rat cyclophilin (Cyc) cDNA probe, prepared by random priming and used as a control to compare the amounts of RNA loaded and transferred. Semiquantitative analysis of specific 2,3-STase mRNA was performed by densitometric scanning of the autoradiograms employing an Eagle Eye II video imaging system (Stratagene, La Jolla, CA, USA). Results are expressed as the 2,3-STase/Cyc mRNAs relative optical density (O.D.) ratios.

Synthesis and amplification of rat α2,3-STase cDNA

Like other glycosyltransferases bearing type II membrane topology, the 2,3-STase has a short cytoplasmic domain, a hydrophobic signal-anchor sequence, a luminal stem region not required for catalytic activity and a large luminal catalytic domain (Kleen & Berger 1993) (Fig. 1). For the
purpose of this study, we synthesized a cDNA probe of 346 bp encoding for a non-conserved amino acid sequence (residues 236 to 350) of the catalytic domain of the enzyme located 10 amino acid residues far from the carboxyl-end of the so-called sialylmotif region (residues 178–225) (Wen et al. 1992, Datta & Paulson 1995). The oligonucleotide primers employed for the construction and amplification of cDNA by reverse transcription-polymerase chain reaction (RT-PCR) were chosen based on the 2,3-STase cDNA sequence reported by Wen et al. (1992); sequences of the corresponding sense and antisense oligonucleotides are shown in Fig. 1. Reverse transcription of poly(A)+ RNA extracted from female rat brain (which expresses 2,3-STase mRNA at relatively high levels (Wen et al. 1992, Kitagawa & Paulson 1994)) was performed employing the GeneAmp RNA PCR reagent kit (Perkin Elmer, Foster City, CA, USA) following the instructions of the manufacturer. After completion of the reverse transcription, PCR was initiated by adding 80 µl of a mix containing 2·5 units AmpliTaq DNA polymerase (Perkin Elmer), 15 mM of the sense and antisense oligonucleotides, 2 mM MgCl2 and 8 µl 10 × PCR buffer II (Perkin Elmer). The temperature was raised to 95 °C for 105 s and the amplification was carried out by cycling 35 times, 30 s at 95 °C, 30 s at 60 °C and 1 min at 72 °C, and ended with a final extension step of 7 min at 72 °C. The 346 bp cDNA fragment was isolated by agarose gel electrophoresis followed by purification in polyester plug spin inserts (Glenn & Glenn 1994) and ethanol precipitation, and then subcloned into the pCR-Script SK (+) cloning vector (Stratagene). The 346 bp cDNA fragment was isolated by agarose gel electrophoresis followed by purification in polyester plug spin inserts (Glenn & Glenn 1994) and ethanol precipitation, and then subcloned into the pCR-Script SK (+) cloning vector (Stratagene).

The sequence of the cDNA fragment was confirmed by dideoxynucleotide sequencing (Sanger et al. 1977). Northern blots of total RNA from different tissues probed with the 2,3-STase cDNA showed probe hybridization to a mRNA of ~2·5 kb only in those tissues previously reported to express this particular enzyme (Wen et al. 1992). The relative amounts of α2,3-STase mRNA detected in pituitary glands from castrated or D1 rats employing this particular cDNA probe represented ~39% of those present in other rat tissues that express this particular mRNA at high levels (i.e. lung, heart, brain, kidney).

Chromatofocusing of anterior pituitary extracts

AP glands were individually homogenized at 4 °C with ten strokes of a Teflon pestle in 100 µl chromatofocusing eluent buffer (1:8 dilution of Polybuffer 74 (Pharmacia Fine Chemicals, Piscataway, NJ, USA) in deionized water, pH 4·0) containing the protease inhibitor phenylmethylsulphonylfluoride (0·2 mg/ml; Sigma, St Louis, MO, USA). The AP homogenate was centrifuged at 10000 g for 30 min at 4 °C, and the supernatant fraction (AP extract) removed and stored frozen at −20 °C. Groups of four AP extracts were separated chromatofocused in 30 × 1 cm columns of PBE-94 (Pharmacia) following a chromatofocusing procedure previously described (Ulloa-Aguirre et al. 1992a). After measuring the pH of the eluent fractions (110 to 130 2-ml fractions/column), they were stored frozen at −20 °C until the day of radioimmunoassay (RIA) of FSH. A total of three or four AP extracts per animal group were pooled and chromatofocused separately in triplicate columns. Recoveries of FSH by this method were 76 ± 4% of the total amount originally applied to the column.

RIA of FSH and oestradiol

Purified rat FSH-I-7 (NIADDK, Bethesda, MD, USA) was iodinated by the Chloramine T method. The RIA of FSH was performed using the rat RIA kit provided by the NIADDK as previously reported (Ulloa-Aguirre et al. 1988); the reference preparation employed was rat FSH-RP-2 (NIADDK). To avoid interassay variations, all samples from a single column were included in the same batch. Intra-assay variability for this RIA system was 7% and the sensitivity was 0·1 ng/ml. The RIA of 17β-oestradiol was performed employing a solid phase commercial reagent kit (Diagnostic Products Corporation, Los Angeles, CA, USA). All samples were analysed in a single RIA run; the intra-assay variability was 3% and the sensitivity was 4 pg/ml.

Statistical analysis

One-way analysis of variance and the unpaired t-test were used to analyse differences between groups.

RESULTS

Adult cyclic rats were killed at the times shown in Fig. 2 and total pituitary RNA was analysed for the presence of 2,3-STase mRNA. As shown in the figure, the mRNA of the enzyme changed according to the day and time of the oestrous cycle. The highest levels were recorded on the morning of D1, whereas the lowest were on the morning of the days of P and O. A progressive increase in the
enzyme mRNA levels was observed at 1800 h on the day of O and at 0200 h on D1 (not shown). With castration on the morning of the day of P, the AP $\alpha_{2,3}$-STase mRNA levels remained at the values found on day of P until day 21 post castration, when the enzyme mRNA levels showed a progressive increase reaching maximal values after day 28 post-oophorectomy (Fig. 3).

Based on the results of the time course study, the effects of oestradiol administration on the pituitary $\alpha_{2,3}$-STase mRNA levels were then tested. For this purpose, animals were subcutaneously injected with either vehicle (corn oil) or 10 µg oestradiol benzoate (OB) on the morning of the day of O and total AP RNA was thereafter obtained at 1000 h on the presumptive D1. In a separate experiment, D1 animals received at 1000 h 2 mg/kg body weight (b.w.) of the potent oestrogen receptor antagonist ICI 182,780 (Wakeling et al. 1991) and its effects on 2,3-STase mRNA levels were then examined eight and twenty-four hours after its administration. As shown in Fig. 4, administration of OB resulted in a significant decrease in the 2,3-STase mRNA to levels similar to those detected during the morning of O. In contrast, administration of a single dose of ICI 182,780 at 1000 h on D1 completely reversed the naturally occurring, time-dependent decrease in 2,3-STase mRNA levels observed at 1800 h on D1 and partially (by 30 ± 5%) that occurring at 1000 h on D2 (Fig. 5). Castrated rats also received one dose of 10 µg OB or vehicle on day 28 after oophorectomy and the levels of 2,3-STase mRNA were analysed 24 h and 48 h after OB administration. As shown in Fig. 6, oestradiol administration to female castrates significantly reduced the levels of the enzyme mRNA, although to a lesser extent than in OB-treated intact animals (to $36.8 \pm 7.8\%$ of the levels detected 24 h and 48 h after OB administration in vehicle-injected castrated controls respectively). In this animal group, administration of ICI 182,780 and oestradiol benzoate, in tandem, reversed by 36% the effects of...
OB on 2,3-STase mRNA levels observed at 48 h (Fig. 7).

Chromatofocusing fractionation of AP extracts revealed a marked increase in the relative abundance of FSH charge isoforms with elution pH values ≥ 5·0 at the time of highest serum oestradiol concentrations and lowest 2,3-STase mRNA levels, i.e. on the morning of P (Fig. 8). These less acidic FSH isoforms remained relatively increased during the day of O in a setting of low enzyme mRNA and relatively decreased serum oestradiol levels. Finally, on the morning of D2, there was a dissociation between the enzyme mRNA and serum oestradiol levels and the charge distribution of AP FSH, with the highest values for the most acidic isoforms in a setting of moderately increased serum oestradiol and decreased levels of the 2,3-STase mRNA (Fig. 8). In castrated rats, the pH distribution pattern of AP FSH was similar to that exhibited by intact animals killed at 1000 h on D1, with >80% of total FSH recovered in elution pH values <5·0; a modest and not significant increase in less acidic isoforms (elution pH values ≥ 5·0) was detected exclusively on day 28 post-oophorectomy (not shown).

DISCUSSION

In the present study, we found that the mRNA levels of the 2,3-STase, one of the enzymes that add sialic acid to FSH, varied significantly according to the time and day of the rat oestrous cycle and that the dynamics of these changes in the enzyme mRNA levels were temporally associated with variations in serum oestradiol concentrations. Specifically, during the preovulatory days (D2 and P days) we observed a progressive decrease in 2,3-STase mRNA levels in the face of increasing serum oestradiol concentrations, reaching its lowest values immediately before and after maximal pituitary exposure to this sex steroid, i.e. in the
morning of P and O respectively; conversely, a significant rise in enzyme mRNA levels occurred at the time of lowest oestradiol output, thus suggesting that changes in oestrogen levels may influence the rate of transcription and/or stability of this glycosyltransferase mRNA. This possibility was in fact experimentally documented by the studies showing that administration of OB to both intact and castrated female rats blocked the naturally occurring increase in A2,3-STase mRNA imposed by the low oestrogenic milieu, whereas the opposite effect was observed when the pure anti-oestrogen ICI 182,780 was injected to block the effects of endogenous or exogenous oestrogens. Apparently, the supressive effects of oestradiol on the enzyme mRNA levels may extend throughout several hours or even days after maximal oestradiol exposure as disclosed by the persistently low A2,3-STase mRNA levels during the morning of O and after gonadal removal on the day of P. Nevertheless, the finding that the A2,3-STase mRNA levels remained persistently low at least for 14 days following oophorectomy, and that the response to both oestradiol benzoate and ICI 182,780 in the gonadectomized group was considerably attenuated as compared with those exhibited by the intact animals, suggests that other extrapituitary factors may be additionally involved in the control of this enzyme mRNA levels (see below).

We and others have shown that sialic acid plays a key role in determining both the charge isoform distribution and the biological activity of FSH and other glycoprotein hormones (Reichert 1971, Ulloa-Aguirre et al. 1984, Chappel et al. 1982, 1984, Wide 1989, Schaaf et al. 1997). Incubation of rat anterior pituitary glands with sialic acid leads to a decrease in the release of FSH and other glycoprotein hormones.

Journal of Molecular Endocrinology (1999) 23, 153–165

Downloaded from Bioscientifica.com at 03/28/2019 01:40:58AM via free access
and monkey AP extracts and recombinant human FSH with the enzyme neuraminidase progressively decreased the most acidic components of the hormone while concomitantly increasing the proportion of less acidic forms until only FSH isoforms with elution pH values of 6.4 or greater were detected (Chappel et al. 1984, Ulloa-Aguirre et al. 1984, Galway et al. 1990). Studies with neuraminidase-treated human sera and pituitary extracts also demonstrated that removal of sialic acid residues induces a shift in the charge of FSH isoforms towards less acidic isomers, thus suggesting that some of the charge variations detected in different physiological conditions are mainly due to differences in the terminal sugar content of FSH (Wide 1982, 1985, 1989). In the present study, chromatofocusing fractionation of AP extracts allowed the identification of significant shifts in FSH charge isoform distribution throughout the cycle, with a significant increase in the relative abundance of the less acidic FSH isoforms during the morning of the day of P and to a lesser extent during O, times at which low 2,3-STase mRNA levels were detected. However, such a close inverse relationship between the abundance of less acidic isoforms and enzyme mRNA levels was practically absent during the following days of the cycle, particularly on D2, as well as after 7 and 14 days of castration, conditions during which the highest relative abundance of more acidic isoforms was detected in a setting of significantly decreased 2,3-STase mRNA levels. The existence of a partial rather than a complete correlation between this enzyme mRNA levels and the changes in FSH charge isoform distribution may be due to the following: (1) the concomitant participation of other sialyltransferases (e.g. α2,6-STase) or glycosyltransferases (which may in turn be regulated by one or several extrapituitary factors) in FSH processing, including sialylation and/or sulphation (Baenziger &

![Graph](image)

Figure 6. Changes in anterior pituitary 2,3-STase mRNA levels after 24 h and 48 h of oestradiol benzoate administration (OB; 10 µg) on day 28 post-oophorectomy (means ± s.d. of 3 independent experiments). Different letters above the bars indicate the existence of significant (P<0.05) differences between each group. Representative Northern blots of total RNA from anterior pituitary glands probed with radiolabelled 2,3-STase and cyclophilin cDNA probes are also shown.
and whose relative abundance may be increased at a given time (Dahl & Stone 1992, Stanton et al. 1996).

These and other previously reported in vivo experiments (Padmanabhan et al. 1988, Wide & Naessén 1994) do not clarify unambiguously whether oestradiol modifies 2,3-STase mRNA levels and thus protein sialylation directly on the pituitary gland, on the hypothalamus to regulate GnRH activity, or by a combination of several pathways. Although some studies strongly implicate GnRH in modulating the glycosylation and degree of sialic acid-dependent charge heterogeneity of LH and FSH respectively (Galle et al. 1983, Miller et al. 1983, Liu et al. 1992, 1994, Ulloa-Aguirre et al. 1992b), more recently, several in vivo studies involving experimental animals and humans have allowed us to distinguish between pituitary and hypothalamic sites of regulation by oestrogens. Using the nutritionally growth-restricted ovariectomized lamb as the experimental model (state of hypogonadotrophism due to central inhibition of GnRH secretion in which the pituitary responsiveness to exogenous GnRH is preserved (Ebling et al. 1990)) it has been shown that whereas pulsatile administration of GnRH failed to alter the pattern of charge isoform distribution of intrapituitary and secreted FSH, oestradiol treatment selectively increased the secretion of less acidic/sialylated isoforms (Hassing et al. 1993, Lee et al. 1998). Likewise, although in normally ovulating women the relative abundance of less acidic FSH isoforms increased dramatically during the periovulatory period (a time of increased oestradiol levels and pituitary GnRH sensitivity) (Padmanabhan et al. 1988, Wide & Bakos 1993, Zambrano et al. 1995), the changes observed in the distribution of more and less acidic/sialylated serum FSH isoforms were not significantly altered by the consecutive administration of a low and high GnRH dose during each cycle phase (Zambrano et al. 1995). Although such studies data do not exclude additional intrapituitary loci of control via autocrine and/or paracrine interactions (whose nature and role, if any, in modifying the post-translational molecular forms of FSH are not known), the overall data strongly indicate that oestrogens play a determinant role in defining the degree of glycosylation of the FSH molecule during certain physiological conditions.

The present results are in agreement with other studies showing that products from target glands under the control of the AP gland are tightly involved in the posttranslational processing of the trophic signal (Miura et al. 1989, Gyves et al. 1990, Darmesh & Baenziger 1993, Helton & Magner 1994a,b, Persani et al. 1998). In fact, it has
FIGURE 8. Temporal relationship between changes in anterior pituitary 2,3-STase (STase) mRNA levels throughout the oestrous cycle (a), the serum oestradiol concentrations (black bars in (b)) and the charge distribution of pituitary FSH at 1000 h on each day of the oestrous cycle (c); data in (c) are presented as the proportion of FSH recovered within elution pH values ≥ 5.0 and <5.0 normalized as a percentage of total FSH recovered from each single chromatofocusing run (n=three columns per day of cycle). Intrapituitary FSH content was 0.15 ± 0.04, 0.16 ± 0.02, 0.06 ± 0.01 and 0.08 ± 0.01 µg FSH-RP-2/gland on the days of P, O, D1 and D2 respectively. For each graph the results represent the means ± s.d. The pattern of oestradiol levels in serum samples taken at frequent intervals throughout the oestrous cycle as reported by Smith et al. (1975) is also shown for comparative purposes (closed circles in (b); means ± s.e.m.). Horizontal bars represent the dark period.

Journal of Molecular Endocrinology (1999) 23, 153–165
been demonstrated that activities of some glycosyltransferases (α2,6-sialyltransferase and GalNAc-transferase) and mannosidases (α-mannosidase-II), may be modulated specifically at the pituitary level by thyroid hormones (Helton & Magner 1994a,b) and oestrogens (Darmesh & Baenziger 1993), thereby potentially affecting sialylation and sulphation of TSH and LH respectively. Thus, regulation of the structure and biological properties of glycoprotein hormones by specific stimuli may represent an additional level of feedback control by which the target cell regulates the duration and intensity of the trophic signal released from the AP gland.

ACKNOWLEDGEMENTS

This work was supported by grants from the Consejo Nacional de Ciencia y Tecnología (CONACyT, grants 0004P-N9505 and G016M), the Programa Latinoamericano de Capacitación e Investigación en Reproducción Humana (PLACIRH), the Universidad Autónoma Metropolitana-Iztapalapa, and PADEP-UNAM (PLACIRH), the Universidad Autónoma Cerpa-Poljak A, Bishop LA, Hort YJ, Chin CKH, DeKroon R, Baenziger JU & Green ED 1988 Pituitary glycoprotein hormones by specific stimuli may represent an additional level of feedback control by which the target cell regulates the duration and intensity of the trophic signal released from the AP gland.

REFERENCES

Galway AB, Hsueh AJW, Keene JL, Yamoto M, Fauser BCJM & Boime I 1990 In vitro and in vivo bioactivity of recombinant human follicle-stimulating hormone and partially deglycosylated variants secreted by transfected eukaryotic cell lines. Endocrinology 127 93–100.

Gyves PW, Gesundheit N, Thotakura NR, Stannard BS, DeCherney GS & Weintraub BD 1990 Change in the distribution of sulfated and sialylated thyrotropin in congenital hypothyroidism. Proceedings of the National Academy of Sciences of the USA 87 3792–3796.

Wilde L & Bakos O 1993 More basic forms of both human follicle-stimulating hormone and luteinizing hormone in serum at midcycle compared with the follicular and luteal phase. *Journal of Clinical Endocrinology and Metabolism* **76** 885–889.

REVISED MANUSCRIPT RECEIVED 21 April 1999